Pharmacokinetics of Sufentanil in Patients Undergoing Abdominal Aortic Surgery

The authors determined the pharmacokinetics of sufentanil, 12.5 \(\mu \text{g} \cdot \text{kg}^{-1} \) iv in patients undergoing elective abdominal aortic surgery. The mean age (±SD) of the ten patients was 68.4 ± 7.9 yr; their mean weight was 74.4 ± 19.1 kg. Six patients underwent aortofemoral grafting and four had abdominal aortic aneurysm repair. Serum sufentanil concentrations were determined in samples drawn at increasing intervals over a 24-h period. A three-compartment pharmacokinetic model was fit to the concentration versus time data. Total drug clearance was 15.0 ± 3.2 ml·min\(^{-1} \cdot \text{kg}^{-1}\). The volume of distribution at steady-state (\(V_d \)) was 8.7 ± 4.5 l·kg\(^{-1}\). The elimination half-life was 12.1 ± 5.8 h. Both the \(V_d \), and the elimination half-time were positively correlated with patient age. There were no significant correlations between the pharmacokinetic variables and the duration of aortic cross-clamping, the duration of surgery, or the rate or total volume of iv fluids given intraoperatively. In general surgical patients, the mean elimination half-time of sufentanil has been reported to be 2.7 h. When sufentanil is used in large doses as the primary anesthetic agent for patients undergoing abdominal aortic surgery, the long elimination half-time observed implies that recovery will take much longer than would have been anticipated from previously published pharmacokinetic data. (Key words: Anesthetics, intravenous: sufentanil. Pharmacokinetics: sufentanil. Surgery: abdominal aorta; vascular.)

Providing Anesthesia with sufentanil is popular for patients having cardiovascular surgery because this technique is associated with hemodynamic stability and suppression of neuroendocrine responses to surgery.1 Furthermore, a recent report suggests that, compared to isoflurane, sufentanil anesthesia is associated with a lower incidence of postoperative complications in patients undergong abdominal or thoracoabdominal aortic surgery.2 Ideally, to achieve and maintain a desired drug concentration, intravenous anesthetics like sufentanil should be administered by continuous infusion based upon pharmacokinetic data and principles. However, the pharmacokinetics of sufentanil have not been determined in patients undergoing abdominal aortic surgery. Pharmacokinetic variables from other patient populations may not be applicable, because opiate disposition is altered in patients having abdominal aortic surgery.3 Therefore, we determined the pharmacokinetics of sufentanil 12.5 \(\mu \text{g} \cdot \text{kg}^{-1} \) in this patient population.

Materials and Methods

After approval by the Human Subjects Committee, informed consent was obtained from each participant. Ten patients (eight men, two women) undergoing abdominal aortic surgery with infrarenal aortic cross-clamping were studied. Demographic information is shown in table 1. The patients’ regular medications were continued up to the time of surgery. Morphine 0.15 mg·kg\(^{-1}\)im and scopolamine 0.006 mg·kg\(^{-1}\)im were given 1 h prior to transfer to the operating room. Intravenous, radial arterial, and pulmonary arterial catheters were inserted before induction of anesthesia. Anesthesia was induced with sufentanil 7.5 \(\mu \text{g} \cdot \text{kg}^{-1} \), infused at 2.5 \(\mu \text{g} \cdot \text{kg}^{-1} \cdot \text{min}^{-1} \). Metocurine 0.6 mg·kg\(^{-1}\) was given concomitantly for muscle relaxation. Ventilation was controlled manually, and the trachea was intubated 2 min after completion of the sufentanil infusion. A second dose of sufentanil 5.0 \(\mu \text{g} \cdot \text{kg}^{-1} \) was infused at the same rate just prior to skin incision.

No additional anesthetics were given until either heart rate or mean arterial pressure increased to 120% of the value measured immediately after the second infusion. The sufentanil concentration at that time was calculated by interpolation between measured concentrations, providing an estimate of the concentration required to suppress hemodynamic responses to surgical stimulation. Subsequently, nitrous oxide, diazepam, or morphine were given at the discretion of the attending anesthesiologist. Small additional doses of metocurine and/or pancuronium were used as necessary. All patients received antibiotics for prophylaxis against infection, heparin, protamine, and vasoactive drugs if indicated. Intraoperatively, an autotransfusion device was used for salvage and rein-

* Associate Professor of Anaesthesia, St. Boniface General Hospital.
† Research Fellow in Anaesthesia, St. Boniface General Hospital.
‡ Research Associate, Department of Anaesthesia, Foothills Hospital at the University of Calgary.
§ Research Associate, Department of Anaesthesia, St. Boniface General Hospital.
¶ Professor and Head, Department of Anaesthesia, Foothills Hospital at the University of Calgary.

Received from the Department of Anaesthesia, St. Boniface General Hospital and the University of Manitoba, Winnipeg, Manitoba, Canada; and the Department of Anaesthesia, Foothills Hospital at the University of Calgary, Calgary, Alberta, Canada. Accepted for publication October 31, 1988. Supported by the Manitoba Heart Foundation and Janssen Pharmaceutica. Presented in part at the Canadian Anaesthesiologists’ Society Annual Meeting, Halifax, Nova Scotia, June, 1988.

Address reprint requests to Dr. Hudson: Department of Anaesthesia, St. Boniface General Hospital, University of Manitoba, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6.
fusion of autologous blood supplemented by homologous packed red blood cells if necessary, plus sufficient crystalloid to maintain pulmonary artery wedge pressure near the control value.

Postoperatively, patients were given diazepam, morphine, and vasoactive drugs as indicated, as well as any medications required for their underlying medical conditions. Fluids were given as needed to maintain normal cardiac filling pressures and urine output. The lungs of all patients were ventilated overnight, and tracheal extubation occurred 16–23 h after induction of anesthesia.

Samples of arterial blood were drawn according to the following schedule: 1, 3, 5, 10, 15, 20, 30, 45, 60, and 90 min and 2, 5, 3, 5.5, 4, 6, 8, 10, 12, 14, 16, 18, and 24 h after the end of the first infusion. The serum was separated and stored at −20°C.

ANALYTIC TECHNIQUES

Serum sufentanil concentrations were determined in triplicate by radioimmunoassay (RIA) kits (Janssen Life Sciences Products). Control samples were prepared by adding sufentanil solution 200 ng·ml⁻¹ to pooled blank plasma to produce final concentrations of 0.15, 0.40, 0.85, 1.40, 2.80, 4.80, and 8.20 ng·ml⁻¹. The patient and control samples were extracted by mixing either 0.5 ml plasma and 0.5 ml blank plasma (for lower concentrations) or 0.2 ml plasma and 0.8 ml blank plasma (for higher concentrations), with 0.05 ml 30% methanol/H₂O and 0.5 ml 0.5 M NaOH. After vortexing, 5.0 ml heptane-isooamy alcohol (98.5/1.5 v/v) was added and the tubes were placed on a rotary mixer for 10 min at 200 rpm. After centrifuging, the organic phase was removed and evaporated under nitrogen at 55°C. The residue was dissolved in 0.05 ml methanol, followed by addition of 0.5 ml phosphate buffer (0.05 M, pH 7.5 with 2% bovine albumin). The tubes were vortexed and then centrifuged. The supernatant was transferred to polypropylene tubes and vortexed after adding 0.05 ml ¹H-sufentanil, then vortexed again after adding 0.2 ml sufentanil antiserum. In the nonspecific binding tubes, 0.2 ml deionized water was substituted for the antiserum. After mixing for 4 h at 50 rpm, 0.2 ml of dextran-charcoal suspension was added, and the tubes were mixed for another 2 h. After centrifuging at 5000 g for 25 min, the supernatant was combined with 6.0 ml Pico-Fluor 30 (Canberra Packard, Canada) in 7-ml glass scintillation vials. The vials were counted for 10 min, with correction for color and chemical quenching by external standard ratio. Daily, standards were diluted according to the RIA kit instructions, then 0.05 ml of each standard was mixed with 1.0 ml blank plasma and 0.5 ml 0.5 M NaOH, and then extracted in the same fashion as the patient and control samples. The standard curves were analyzed by weighted linear regression after logit transformation, and the concentration in the patient samples was determined from the regression line. The measured concentrations reported are the mean of each triplicate. The between-day coefficient of variation of the assay was 11.6% at 0.15 ng·ml⁻¹, 11.0% at 1.4 ng·ml⁻¹, and 3.3% at 8.2 ng·ml⁻¹.

Concentrations less than 0.1 ng·ml⁻¹ were measured in a total of 15 samples drawn between 14 and 24 h in six subjects. Because this is below our lowest concentration in our control samples, these data points were excluded from the pharmacokinetic analysis.

DATA ANALYSIS

Exponential equations based upon two- and three-compartment models and allowing for multiple infusions (see Appendix) were fit to the serum sufentanil concentration versus time data using the PCNONLIN nonlinear regression program. A weighting scheme of 1/[predicted concentrations] was used. The statistically preferred model was determined by the F-ratio test. Standard formulae were used to calculate drug clearances, the volume of central compartment (Vc), peripheral compartment volumes (Vp and Vg), the volume of distribution at steadystate (Vds), and the distribution and elimination half-times. Linear regression was used to test for correlations between the derived pharmacokinetic variables and age, weight, duration of abdominal aortic cross-clamping (defined as the duration from placement of the proximal cross-clamp to removal to removal of all distal clamps), duration of surgery, and the rate and volume of iv fluids (crystalloid, colloid, and blood products) infused intra-

TABLE 1. Demographic Data

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (Years)</th>
<th>Sex</th>
<th>Weight (kg)</th>
<th>Operation</th>
<th>Associated Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53.0</td>
<td>M</td>
<td>81.2</td>
<td>ABF</td>
<td>COPD</td>
</tr>
<tr>
<td>2</td>
<td>59.2</td>
<td>M</td>
<td>104.0</td>
<td>ABF</td>
<td>Peptic ulcer disease</td>
</tr>
<tr>
<td>3</td>
<td>65.7</td>
<td>F</td>
<td>45.0</td>
<td>AAA</td>
<td>IHD, hypertension, COPD trigeminal neuralgia</td>
</tr>
<tr>
<td>4</td>
<td>67.3</td>
<td>M</td>
<td>61.2</td>
<td>ABF</td>
<td>Hypertension</td>
</tr>
<tr>
<td>5</td>
<td>67.7</td>
<td>M</td>
<td>95.1</td>
<td>AAA</td>
<td>IHD</td>
</tr>
<tr>
<td>6</td>
<td>71.3</td>
<td>M</td>
<td>80.4</td>
<td>ABF</td>
<td>Permanent pacemaker</td>
</tr>
<tr>
<td>7</td>
<td>72.0</td>
<td>M</td>
<td>82.8</td>
<td>AAA</td>
<td>Hypertension, previous CABG</td>
</tr>
<tr>
<td>8</td>
<td>72.7</td>
<td>M</td>
<td>72.0</td>
<td>AAA</td>
<td>Hypertension, COPD</td>
</tr>
<tr>
<td>9</td>
<td>73.7</td>
<td>M</td>
<td>60.4</td>
<td>ABF</td>
<td>Hypertension</td>
</tr>
<tr>
<td>10</td>
<td>81.0</td>
<td>F</td>
<td>56.7</td>
<td>ABF</td>
<td>Hypertension</td>
</tr>
</tbody>
</table>

AAA = aortic aneurysm repair; ABF = aortobifemoral bypass; COPD = chronic obstructive pulmonary disease; IHD = ischemic heart disease; CABG = coronary artery bypass grafts.
operatively. Null hypotheses were rejected when \(P \) was less than 0.05.

Results

Composite plots of the measured serum sufentanil concentrations versus time are shown in figures 1 and 2. In all ten subjects, the three-compartment model described the concentration versus time data significantly better than did the two-compartment model. Total drug clearance (ml \(\cdot \) min\(^{-1} \)) was significantly correlated with body weight \((r = 0.73, P = 0.017)\). The derived pharmacokinetic variables are listed in tables 2–4.

There were significant positive correlations between patient age and the \(V_\text{d} \) and elimination half-time (figs. 3, 4). Neither \(V_c \) nor total drug clearance were significantly correlated with patient age. As well, there were no significant correlations between the duration of aortic cross-clamping (89 ± 37 min), the duration of surgery (227 ± 70 min), the rate of intraoperative iv fluid administration (28.5 ± 9.2 ml \(\cdot \) h\(^{-1} \cdot \) kg\(^{-1} \)), or the total volume of intraoperative iv fluids (104 ± 37 ml \(\cdot \) kg\(^{-1} \)).

Secondary peaks of the sufentanil concentration, defined as increases in the measured concentration of at least twice the coefficient of variation of the assay in two consecutive samples, were observed in six subjects (fig. 2). These peaks occurred in five patients 3–10 h after the initial dose, either late during the course of surgery (after vascular clamps had been removed), or after transfer of the patient to the intensive care unit, at which time the patients were beginning to move spontaneously as they recovered from the effects of anesthetic and neuromuscular blocking drugs. One patient did not awaken until 13 h after induction, and in this individual a secondary peak was observed 14–18 h after induction of anesthesia.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Rapid Distribution Half-time (Min)</th>
<th>Slow Distribution Half-time (Min)</th>
<th>Elimination Half-time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6</td>
<td>20.9</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>0.8</td>
<td>21.7</td>
<td>6.6</td>
</tr>
<tr>
<td>3</td>
<td>1.3</td>
<td>15.7</td>
<td>5.0</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>36.0</td>
<td>18.0</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>20.6</td>
<td>7.3</td>
</tr>
<tr>
<td>6</td>
<td>1.6</td>
<td>25.0</td>
<td>16.1</td>
</tr>
<tr>
<td>7</td>
<td>2.2</td>
<td>28.5</td>
<td>16.2</td>
</tr>
<tr>
<td>8</td>
<td>1.6</td>
<td>24.0</td>
<td>10.0</td>
</tr>
<tr>
<td>9</td>
<td>1.1</td>
<td>25.9</td>
<td>17.2</td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>24.4</td>
<td>19.6</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
<td>24.3</td>
<td>12.1</td>
</tr>
<tr>
<td>SD</td>
<td>0.5</td>
<td>5.4</td>
<td>5.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient</th>
<th>(V_c) (l⋅kg(^{-1}))</th>
<th>(V_\text{d}) (l⋅kg(^{-1}))</th>
<th>(V_\text{s}) (l⋅kg(^{-1}))</th>
<th>(V_\text{d} \text{m}) (l⋅kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.407</td>
<td>0.700</td>
<td>4.47</td>
<td>5.57</td>
</tr>
<tr>
<td>2</td>
<td>0.109</td>
<td>0.524</td>
<td>3.31</td>
<td>3.94</td>
</tr>
<tr>
<td>3</td>
<td>0.216</td>
<td>0.432</td>
<td>3.02</td>
<td>4.27</td>
</tr>
<tr>
<td>4</td>
<td>0.300</td>
<td>0.940</td>
<td>11.15</td>
<td>12.40</td>
</tr>
<tr>
<td>5</td>
<td>0.356</td>
<td>0.612</td>
<td>5.25</td>
<td>6.22</td>
</tr>
<tr>
<td>6</td>
<td>0.210</td>
<td>0.534</td>
<td>8.24</td>
<td>8.99</td>
</tr>
<tr>
<td>7</td>
<td>0.200</td>
<td>0.498</td>
<td>8.09</td>
<td>8.79</td>
</tr>
<tr>
<td>8</td>
<td>0.287</td>
<td>0.631</td>
<td>6.41</td>
<td>7.73</td>
</tr>
<tr>
<td>9</td>
<td>0.167</td>
<td>0.729</td>
<td>10.05</td>
<td>10.95</td>
</tr>
<tr>
<td>10</td>
<td>0.283</td>
<td>0.562</td>
<td>17.90</td>
<td>18.74</td>
</tr>
<tr>
<td>Mean</td>
<td>0.254</td>
<td>0.616</td>
<td>7.85</td>
<td>8.72</td>
</tr>
<tr>
<td>SD</td>
<td>0.090</td>
<td>0.146</td>
<td>4.42</td>
<td>4.47</td>
</tr>
</tbody>
</table>

\(V_c \) = volume of the central compartment; \(V_\text{d} \) = volume of the rapidly equilibrating compartment; \(V_\text{s} \) = volume of the slowly equilibrating compartment; \(V_\text{d} \text{m} \) = volume of distribution at steady state.
TABLE 4. Clearances

<table>
<thead>
<tr>
<th>Patient</th>
<th>Total Drug Clearance</th>
<th>Rapid Intercompartmental Clearance</th>
<th>Slow Intercompartmental Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.4</td>
<td>93.3</td>
<td>21.8</td>
</tr>
<tr>
<td>2</td>
<td>14.4</td>
<td>65.0</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>17.7</td>
<td>58.8</td>
<td>17.7</td>
</tr>
<tr>
<td>4</td>
<td>14.8</td>
<td>68.1</td>
<td>14.6</td>
</tr>
<tr>
<td>5</td>
<td>15.2</td>
<td>84.9</td>
<td>21.2</td>
</tr>
<tr>
<td>6</td>
<td>10.1</td>
<td>52.1</td>
<td>15.4</td>
</tr>
<tr>
<td>7</td>
<td>13.2</td>
<td>32.0</td>
<td>10.5</td>
</tr>
<tr>
<td>8</td>
<td>14.4</td>
<td>72.0</td>
<td>16.6</td>
</tr>
<tr>
<td>9</td>
<td>11.0</td>
<td>66.6</td>
<td>19.5</td>
</tr>
<tr>
<td>10</td>
<td>19.6</td>
<td>28.5</td>
<td>23.6</td>
</tr>
<tr>
<td>Mean</td>
<td>15.0</td>
<td>62.1</td>
<td>17.1</td>
</tr>
<tr>
<td>SD</td>
<td>3.2</td>
<td>20.6</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Rapid intercompartmental clearance = \(V_{d}(K_{a2}) = V_{d}(K_{a1}) \). Slow intercompartmental clearance = \(V_{d}(K_{a3}) = V_{d}(K_{a1}) \).

The serum sufentanil concentration at the time of hemodynamic response to surgical stimulation could not be estimated in two subjects. Patient 1 was given diazepam 5 mg iv at the time of tracheal intubation by the attending anesthesiologist, violating the protocol. Patient 8 became hypertensive during the second sufentanil infusion (prior to surgery) and required treatment with diazepam and sodium nitroprusside. In the remaining eight patients, hemodynamic responses to surgical stimulation occurred 61 ± 36 min after induction of anesthesia. At the time patients responded to surgical stimuli, the mean serum sufentanil concentration was 3.1 ± 1.6 ng·mL\(^{-1}\) (range 0.6–4.9 ng·mL\(^{-1}\)). With one exception, the hemodynamic responses occurred during the intraabdominal phase of surgery. Patient 6 responded shortly after skin incision.

Discussion

There is very little information regarding sufentanil pharmacokinetics in humans. Bovill et al. administered sufentanil, 5 \(\mu \text{g} \cdot \text{kg}^{-1} \), to ten patients aged 22–64 yr undergoing general surgery. Plasma sufentanil concentrations were measured in samples drawn up to 8 h after sufentanil administration, and total drug clearance was determined to be 12.7 ml·min\(^{-1} \cdot \text{kg}^{-1} \), with a \(V_{d} \text{a} \) of 1.7 l·kg\(^{-1} \), and an elimination half-time of 2.7 ± 0.4 h.

Total sufentanil clearance in our patients was 15.0 ± 3.2 ml·min\(^{-1} \cdot \text{kg}^{-1} \), which is comparable to that reported by Bovill et al. However, the \(V_{d} \text{a} \) was much larger in our patients undergoing abdominal aortic surgery, 8.7 ± 4.5 l·kg\(^{-1} \), than in their patients undergoing general surgery. The large \(V_{d} \text{a} \) accounts for the very long elimination half-time, 12.1 ± 5.8 h, that we observed.

Two important aspects of our study design differed from that of Bovill et al. First, they administered 5 \(\mu \text{g} \cdot \text{kg}^{-1} \) in a single dose, whereas we administered a total of 12.5 \(\mu \text{g} \cdot \text{kg}^{-1} \) in two doses. However, the dose regimen is exceedingly unlikely to have influenced pharmacokinetics because: 1) the total mass of drug administered was still small, 2) nonlinear, dose-dependent clearance is associated with low rates of drug clearance, rather than higher rates as we observed, and 3) we easily fit a linear pharmacokinetic model to the data. The second major difference is the duration of blood sampling. Bovill et al. sampled for 8 h, whereas we sampled for 24 h. The magnitude of the elimination half-time may be underestimated.
if sampling does not continue far enough into the elimina-
tion phase. This difference in study design could ac-
count, in part, for the longer elimination half-time ob-
served in our patients.

Many factors could alter drug disposition in elderly
patients undergoing abdominal aortic surgery, including
intraoperative events such as the infusion of large volumes
of iv fluids, and aortic cross-clamping.

Our patients ranged in age from 53 to 81 yr. Linear
regression analysis indicated that the Vdₘ of sufentanil
increased significantly with increasing patient age (r = 0.73, P = 0.0169). Because sufentanil is lipophilic, the
most likely explanation for this observation is the increase
in the proportion of adipose tissue relative to total body
weight that occurs with aging. As a result of the age-
related increase in the Vdₘ, the elimination half-time in-
creased with age (r = 0.73, P = 0.0175). The association
of increased age with a larger Vdₘ and a longer elimi-
nation half-time suggests that sufentanil may be eliminated
more slowly in other elderly patients.

The routine use of an autotransfusion device to salvage,
wash, and reinfuse blood lost during surgery is unlikely
to have materially influenced the pharmacokinetics of su-
fentanil. Shanks et al. showed that the pharmacokinetics
of d-tubocurarine were not affected by massive blood loss
or autotransfusion. Neuromuscular blockers have much
smaller volumes of distribution than sufentanil and, con-
sequently, a relatively greater amount of these drugs
remains in the blood after distribution is completed.
Therefore, if the pharmacokinetics of d-tubocurarine are
unaffected by blood loss or autotransfusion, it is very un-
likely that the disposition of a drug like sufentanil would
be substantially altered by these factors.

Infrarenal aortic cross-clamping activates the renin-angio-
tension system. This could aggravate the decrease in
hepatic blood flow that occurs with intraabdominal sur-
gery. However, we were unable to demonstrate signifi-
cant correlations between the derived pharmacokinetic
variables (total drug clearance, Vₑ, Vdₘ, and elimination
half-time) and either the duration of aortic cross-clamping
or the duration of surgery.

Our patients received large volumes of crystalloid in-
traoperatively. Hemodilution decreases drug binding to
plasma proteins. The resulting increase in the unbound
sufentanil fraction will tend to increase the Vdₘ. The
large volume of fluids infused could have contributed to
the large Vdₘ observed. Although the pharmacokinetic
variables did not correlate significantly with either the
volume or rate of iv fluids administered intraoperatively,
this does not mean that these intraoperative factors are
unimportant, because our study group of patients was
small and homogeneous, and fluid therapy was similar in
all patients. We did not attempt to correlate blood loss
with the pharmacokinetic variables, because the use of
autotransfusion precluded precise measurement of blood
loss.

We observed secondary peaks of the measured sufentanil
concentration during the elimination phase in several
patients (fig. 2). This phenomenon has also been reported
with fentanyl, including patients undergoing abdomi-
nal aortic surgery. It has been suggested that the sec-
ondary peaks of the fentanyl concentration are due to
evolution of drug from muscle during emergence, when
spontaneous movement increases muscle blood flow. The
timing of the secondary peaks in our patients suggests
that a similar phenomenon may occur with sufentanil.
Such secondary peaks of the drug concentration could
account for recurrent postoperative respiratory depres-
sion occasionally seen after apparent recovery from su-
fentanil.

The occurrence of secondary peaks suggests that in-
tercompartmental clearances of sufentanil were not con-
stant throughout the study. The magnitude of other pa-
rameters, such as the volume of distribution or total drug
clearance, may also have fluctuated over the study period.
Compartmental pharmacokinetic models are based on
the assumption that the parameters are constant, and, there-
fore, only provide time-weighted average estimates of
clearances and volumes of distribution over the study pe-
riod. In spite of this inherent limitation, the concentra-
tions predicted by the three-compartment model adequately
approximated the measured concentrations.

The serum sufentanil concentration at which patients
required additional drugs to control hemodynamic re-
sponses to surgical stimulation was highly variable, ranging
from 0.6 to 4.9 ng·mL⁻¹ (mean 3.1 ng·mL⁻¹). These
hemodynamic responses occurred after skin incision or dur-
ing the intraabdominal phase of surgery. The opiate con-
centration required to prevent responses varies according to
the intensity of the surgical stimuli, which may ac-
count for some of the variability. In our previous study
of high-dose fentanyl in patients having abdominal aortic
surgery, hemodynamic responses occurred at a mean fenta-
nyl concentration of 18.5 ± 5.6 ng·mL⁻¹. These data
suggest that equipotential plasma concentrations of sufen-
tanil and fentanyl differ sixfold.

We previously demonstrated a long elimination half-
time for fentanyl (8.7 ± 2.5 h) in patients undergoing
abdominal aortic surgery, compared with reported elimi-
nation half-times in patients undergoing general sur-
genery. This was primarily due to a large Vdₘ of fentanyl,
although total drug clearance was somewhat slower than
that reported in normal volunteers or general surgical pa-
ients. In our patients undergoing abdominal aortic
surgery, the Vdₘ of sufentanil is even greater than the
Vdₘ of fentanyl, 8.7 ± 4.5 versus 5.4 ± 1.9 l·kg⁻¹, re-
spectively (P < 0.05 by t test). The larger volume of
distribution of sufentanil is compatible with the fact that
SUFENTANIL KINETICS AND ABDOMINAL AORTIC SURGERY

Sufentanil is approximately twice as lipid soluble as fentanyl. These results differ from those of Bovill et al., whose data suggest that the Vd∞ of sufentanil is slightly smaller than the Vd∞ of fentanyl. The differences in study design and patient population discussed above presumably account for these conflicting results.

In summary, we found a very long elimination half-time of sufentanil (12.1 ± 5.8 h) in patients undergoing abdominal aortic surgery. Clearance of sufentanil in our patients was similar to values reported for patients undergoing general surgery. The long elimination half-time in our patients was due to a large Vd∞.

Our results have implications for clinical practice. If sufentanil is used as the primary anesthetic agent for patients undergoing abdominal aortic surgery, recovery will take much longer than would have been anticipated from previously published pharmacokinetic studies, especially in older patients.

The authors wish to thank the patients who volunteered for this study, their surgical colleagues, Drs. S. Bhattacharya, S. W. Kim, and R. R. Warrain for their cooperation, and the nursing staff of the Surgical Intensive Care Unit, St. Boniface General Hospital for their assistance. Janssen Pharmaceutica (Canada) supplied the RIA kits.

References

11. Shanks CA: Pharmacokinetics of nondepolarizing neuromuscular relaxants applied to calculation of bolus and infusion dosing infusion regimens. ANESTHESIOLOGY 64:72–86, 1986

Appendix

The following formula, based on the principle of superposition, was used to model the concentration versus time data by nonlinear regression:

\[
C(t) = \sum_{i=1}^{n} \left[\sum_{j=1}^{n} A_k \cdot (e^{-(t-jt)}) - 1) \cdot (e^{-\alpha t}) / (\alpha (D)) \right]
\]

where \(C(t)\) = plasma concentration at time \(t\); \(i\) = number of exponential terms or compartments; \(j\) = number of infusions up to time \(t\); \(A_k\) = intercept of the \(i\)th term at \(t = 0\); \(\alpha\) = hybrid rate constant of the \(i\)th term; \(k\) = rate of the \(j\)th infusion; \(t\) = time from the start of the first infusion; \(t_s\) = time of the start of the \(j\)th infusion; \(d_j\) = lesser of: \(t - t_s\) or duration of the \(j\)th infusion; and \(D\) = total dose.