Laboratory Reports

Anesthesiology
70:996–998, 1989

Water Vapor Calibration Errors in Some Capnometers:
Respiratory Conventions Misunderstood by Manufacturers?

John W. Severinghaus, M.D.*

Incorrect calibration has been included in several recently introduced CO₂ analyzers. They display a value of "P_co₂" internally calculated as F_co₂ × P_b rather than F_co₂ × (P_b - 47) where P_b is barometric pressure. This conceptual error appears to have been introduced because new sampling catheter material has become available that effectively removes water vapor before samples reach the sample cell. This seems to have led some manufacturers to assume, incorrectly, that the 47 mmHg factor used to compute P_co₂ in patients would no longer be needed. Users can test whether this error is present in an instrument by testing the effect of wet versus dry gases, and make appropriate corrections if the errors are present. Manufacturers should promptly correct this error in all instruments sold previously. (Key words: Measurement technique, capnography; calibration errors; water vapor. Monitoring: capnography.)

Several new infra-red carbon dioxide analyzers (capnometers or capnographs) have been marketed utilizing an incorrect internal calculation of P_co₂ from the known calibration cylinder %CO₂. They display a value of "P_co₂" internally calculated as %CO₂/100 × P_b rather than %CO₂/100 × (P_b - 47). The problem arises over the handling of water vapor during conversion from instrumental %CO₂ to patient P_co₂.

Terminology

The standard symbols used in respiratory physiology were set forth in 1950 by Pappenheimer. The conversion from fractional concentration in dry gas to partial pressure saturated at body temperature was used as self-evident after Paul Bert demonstrated the prime role of partial pressure, was explicitly stated by Rahn and Fenn, and formally defined by Otis.4

1. STPD: Standard Temperature (0°C) and Pressure (760 mmHg), Dry.
2. BTPS: Body Temperature and Pressure, Saturated (assumed 37°C, 47 mmHg).
3. P_b = Barometric pressure, mmHg.

4. F_co₂: Fractional concentration of CO₂ in dry gas (STPD), where F_co₂ = %CO₂/100.
5. P_co₂ (or P_o₂): Partial pressure of CO₂ (or O₂), in mmHg, of gas saturated with water vapor in the body at body temperature (BTPS), assumed (unless otherwise specified) to be 37°C, computed as:

 \[P_{co₂} = F_{co₂} \times (P_b - 47) \]

(1) The Problem

Capnometers are comparators. They have normally been considered as dry gas analyzers. They are calibrated using a cylinder with a known F_co₂. They measure an unknown gas from a patient, containing water vapor which may dilute the sample. As a first step, some method is needed to correct for this dilution by water vapor, to determine the true F_co₂ of the patient sample, i.e., the "dry gas" CO₂ concentration in the sample. The next step is to convert F_co₂ to P_co₂ (wet) because physicians want to know P_co₂ as it affects gas exchange in a patient, whether inspired (after becoming saturated in the trachea) or alveolar (end-tidal) gas.

Confusion has arisen because new sampling catheter materials have become available that are permeable to water and hence can largely remove water vapor from expired breath. If these new catheter materials work perfectly, gas entering the capnometer sample cell will have the water vapor concentration of room air, whether sampled from a cylinder of dry gas or from an airway saturated with water vapor at 37°C. The analyzed concentration, F_co₂, is that of dry gas because it is standardized with dry gas of a known concentration of CO₂. However, the incorrect assumption has then been made by some manufacturers that the instrument, since it always reads gas of the same (room air) humidity, can be calibrated to read P_co₂ by:

 \[P_{co₂} = F_{co₂} \times P_b \]

(2) This yields the "P_co₂" in the analyzer cell, but not in the patient, where water vapor is always present at 47 mmHg at 37°C. If one uses equation 2, 5% CO₂ is set to read 38.0 mmHg, at sea level with P_b = 760, whereas the correct setting is (0.05 × 713) = 35.65 mmHg. The former setting causes alveolar P_co₂ to read 6.6% too high.

* Professor of Anesthesia.

Received from the Department of Anesthesia and the Cardiovascular Research Institute, University of California, San Francisco, California. Accepted for publication January 23, 1989.

Address reprint requests to Dr. Severinghaus: 1386 HSE, UCSF, San Francisco, California 94143-0542.
An example of the widespread occurrence of this error occurs in a recent paper specifically dealing with accuracy of \(P_{CO_2} \) measurement in which From and Scamman\(^6\) incorrectly computed \(P_{CO_2} \) of a 6.94% \(CO_2 \) calibrated gas to be 51.4 mmHg at 737 mmHg barometric pressure. The correct \(P_{CO_2} \) is 47.9 mmHg, an error of 3.5 mmHg. Four of the six capnometers they tested read even higher than their erroneously high "correct" value. From their data, the actual \(P_{CO_2} \) errors (us. 47.9 mmHg) compute to be +10.1, +5.1, +6.1, and +10.1 mmHg, respectively, for Dataspore Accucap\(^8\), Hewlett-Packard 47210A, Narcomed 3 Capnomed\(^8\), and Novametrix Capnogard\(^8\) 1250.

Compensation by Users for In-built Calibration Error

The error can be corrected by entering into the memory of the capnometer a falsely low value for the calibration cylinder \(%CO_2 \). If water vapor has no effect on the reading, enter actual \(%CO_2 \times (P_b - 47)/P_b \).

Correction for Actual Water Vapor Errors

If the sampling catheter does not fully equilibrate the sample water vapor to that of room air, correction is not straightforward. Water vapor may have three effects on the reading: First, it dilutes the \(CO_2 \). Second, it may increase the reading of \(CO_2 \) by a phenomenon called "pressure broadening," in which \(CO_2 \) molecules that have absorbed an infrared photon can transfer that extra kinetic energy to \(H_2O \) and then be ready to accept another photon. Water is more able than \(O_2 \) and \(N_2 \) to accept this energy. And, third, water molecules may absorb some of the bands of infrared light used to measure \(CO_2 \).

It thus becomes necessary to perform an empirical calibration in which the reading of samples saturated with water vapor are tested against the same gas when dry. This can be done in several ways.

First, 5% \(CO_2 \) from a cylinder can be used to set the meter. This gas may then be bubbled through water at 37\(^\circ\) C and sampled to measure the difference of reading, if any, waiting for at least 2 min to insure that the sampling catheter becomes as wet as it will in use. This requires a carefully constructed humidifier.

Second, the capnometer may be compared to a mass spectrometer sampling the end-tidal gas from a subject after calibrating both with the same dry gas. Mass spectrometers used in medicine do not sense water vapor, but detect all other gases and force their total to sum to 100%, thus providing a dry gas analysis, whether the sample was wet or dry. This method assumes that the mass spectrometer conversion to \(P_{CO_2} \) is correct, or relies on its \(%CO_2 \) result, which cannot be directly compared to automated capnographs which only display \(P_{CO_2} \).

Third, the most useful method is to record the "dry-out" change of the capnometer output when the sample line is suddenly switched from long-term sampling of a subject to the dry calibration gas. Initially, the calibration gas will become humidified by the walls of the sampling catheter and cuvette, and may thus read somewhat low. After some seconds or minutes, the cuvette will dry out and the reading will drift upward by a few percent and stabilize at the dry level. The magnitude of this change depends on all the factors described above, the dilution by water, the pressure broadening, and the absorption by water of infrared light of the same wavelengths used to analyze \(CO_2 \) in the particular analyzer, and will be greater when the capnometer is used with a catheter not permeable to water vapor or water, such as teflon, polyethylene, vinyl, or nylon (in short lengths).

If such a wet-to-dry transition can be demonstrated and measured, then calibration procedure must be to increase the dry gas calibration by a factor equal to the observed dry/wet ratio. For example, gas from a cylinder containing 5.00% carbon dioxide reads 35.6 mmHg after sampling long enough for the catheter and cell to become dry. Expired gas from a patient is then sampled for several minutes, allowing the sample system to become wet. When the sample line is suddenly switched from the airway to the cylinder of 5% \(CO_2 \), the reading is 34.6 for 15 s, then rises to 35.6. The dry-to-wet ratio is then 35.6/34.6 = 1.029. To correctly calibrate the instrument, with a \(P_b = 760 \), the dry gas reading should be set to:

\[
P_{CO_2} = 0.05 \times (760 - 47) \times 1.029 = 36.7 \text{ mmHg} \tag{3}
\]

To accomplish this with most modern capnometers, the user will have to enter a false value for the calibration cylinder, calculated as:

\[
\text{False } CO_2 = \text{Actual } %CO_2 \times [(P_b - 47)/P_b] \times (\text{dry/wet ratio}), \tag{4}
\]

which, in this example, would be 4.83\% \(CO_2 \).

Does your capnograph have this problem? It may not be obvious, since, in many computer-based units, one is instructed to sample the known gas and push a "cal" key, and let the internal computer set the \(P_{CO_2} \) reading. If you know the gas \(CO_2 \) concentration, after performing the calibration, sample that gas again and read the result. If 5% reads 38 mmHg, an error is present. In order to calibrate such instruments correctly, you will have to insert a false \(CO_2 \) concentration into the instrument's memory. If there is no wet/dry difference, insert \(F_{CO_2} \times (713/760) \).

Several commercial capnometers incorrectly compute patient \(P_{CO_2} \) from measured \(%CO_2 \) concentration, neglecting to account for water vapor in the lung. This error, being hidden in the computerized calibration procedure,
cannot be corrected by users. Users can test whether this error is present in an instrument by re-reading the calibration gas after calibration is completed, and noting whether cylinder P_{CO_2} reads $F_{CO_2}(P_a - 47)$ or $F_{CO_2}(P_b)$. It may be helpful to also test the effect of wet versus dry gases. Users can compensate for the error by entering an altered $\%CO_2$ value for the calibration cylinder. Manufacturers should promptly correct this error in all instruments previously sold.

References