Although not routinely used at our institution, mass spectrometers and infrared gas analyzers are available that can measure inspired and expired anesthetic agents concentrations. A recent case report describes the detection of mixed anesthetic agents by mass spectrometry during anesthesia.9

Pending definitive recommendations from the manufacturer, our department now requires that the function of the vapor exclusion system of all Narkomed machines be checked every month, including a physical check of the tightness of the Allen screws and jam nuts.

REFERENCES

Esmolol for Perioperative Management of Thyrotoxic Goiter

ALISA C. THORNE, M.D., * ROBERT F. BEDFORD, M.D. †

Although optimal perioperative management of patients with thyrotoxicosis should include rendering the patient euthyroid prior to surgery, this may not always be possible. In such circumstances, beta-adrenergic blockade with an agent such as propranolol has become standard therapy.1–3 This case report describes the use of the ultra-short acting beta-blocking drug, esmolol, for perioperative management of a patient who required surgical excision of a large toxic goiter that was refractory to both propranolol and high-dose antithyroid medications.

CASE REPORT

A 19-yr-old, 57-kg woman who smoked ½ pack of cigarettes per day presented with a 1-yr history of hyperthyroidism and progressive thyroid enlargement requiring surgical excision due to impending airway compromise. She had been treated with methimazole, 15 mg tid, and propranolol, 80 mg tid, with unsatisfactory control of her hyperthyroidism. After 2 weeks of pretreatment with strong potassium iodide solution (Lugol’s), surgery was attempted at an outside hospital. It was reported that during attempted awake tracheal intubation she developed a tachyarrhythmia, with a ventricular rate over 220/min, necessitating cancellation of surgery.

After transfer to our hospital initial thyroid function tests (TFTs) were: serum T4 = 238 ng/ml (normal = 45–120) and serum T3–RAI = 13.8 ng/ml (normal = 0.8–2.0). Methimazole and propranolol were increased to 40 mg and 80 mg, q 6 h, respectively. During the second week of hospitalization, saturated solution potassium iodide (SSKI) was begun, three drops every 6 h. On the day prior to surgery, the serum T4 was 95 ng/ml. Although the T3–RAI had decreased considerably, the values plateaued at twice normal, in the 3.8–4.0 range, and the methimazole was increased to 40 mg q 3 h.

Since the patient apparently could not be made euthyroid with medical therapy alone, it was decided to proceed with surgery, despite obvious symptoms of thyrotoxicosis.

Preanesthetic physical exam revealed BP = 135/65, and HR = 84–88, despite propranolol therapy. There was ophthalmopathy and protosis; it was reported that the patient’s eyes did not close when she slept. She had a large, tender goiter involving both sides of the neck up to the mandible, making swallowing difficult and painful (fig. 1). She complained of fatigue, generalized weakness, perspiration, nervousness, emotional lability, shortness of breath, and dyspnea on exertion. She was hoarse and could not lie flat in bed without a feeling of suffocation. When lying upright at a 60° angle she displayed a normal respiratory rate, 16–18/min, and a normal pattern of breathing.

Preoperative EKG revealed normal sinus rhythm, left ventricular hypertrophy, and strain. An echocardiogram was normal. A computerized tomographic scan of the neck revealed moderate tracheal narrowing and a chest roentgenogram demonstrated a 4-cm segment of cervical trachea narrowed to a diameter of 1 cm, compared with a
tracheal diameter of 1.5 cm above and 1.8 cm below the narrowing. Pulmonary function tests: forced vital capacity (FVC)–81% of predicted; forced expiratory volume 1 second (FEV1)–52% of predicted; FEV1/FVC–52%; peak expiratory flow (PEF)–32%; expiratory flow rate (EFR) 25–75%–99% of predicted. A flow-volume loop was consistent with a fixed extrathoracic airway obstruction. Additional preoperative laboratory data included: hematocrit–30.5%; alkaline phosphatase–281 units/l (normal 30–110); calcium–9.6 mg/dl; phosphorous–5.8 mg/dl (normal = 2.2–4.2).

The patient received meperidine, 75 mg, hydroxyzine, 50 mg and glycopyrrolate, 0.2 mg, im 1 h before coming to the operating room. She was well sedated and was transported to the OR while in the sitting position. Initial BP was 128/70, HR was 75. Immediately after EKG and automatic BP cuff were applied, esmolol iv was infused at a rate of 59 µg·kg⁻¹·min⁻¹. Midazolam, 1 mg iv was given and 4% lidocaine, 160 mg, was administered topically to the upper airway via nebulizer and face mask. After preoxygenation, general anesthesia was induced with the patient in the sitting position using thiopental, 75 mg iv, 70% N₂O in O₂ and isoflurane via face mask with spontaneous ventilation. Once a deep level of anesthesia was obtained, she received lidocaine, 100 mg iv, and laryngoscopy was performed without the use of neuromuscular blockade. The larynx was difficult to visualize because of the large anterior neck mass which effectively decreased the submental space. However, the epiglottis was visualized using a No. 3 MacIntosh blade and a 6-mm endotracheal tube was inserted on the first attempt. A 4.5 mm diameter fiberoptic bronchoscope also was ready for use in the event that a difficult intubation was encountered. The automatic noninvasive BP device provided satisfactory cardiovascular monitoring both before and during the brief induction period. In order to minimize the patient's pain and anxiety, a radial arterial cannula was inserted after she was unconscious. An intraoperative arterial blood gas obtained 1 h after surgical incision revealed: (FiO₂ = 58%) P O₂ = 137, P CO₂ = 42, pH = 7.40, HCO₃ = 26, SAO₂ = 99%. Hemoglobin oxygen saturation as measured by a pulse oximeter was 99–100% throughout the perioperative period.

Anesthesia was maintained with isoflurane and N₂O in O₂, fenitoin, 250 µg iv, and vecuronium. Esmolol infusion was titrated between 15 and 132 µg·kg⁻¹·min⁻¹ in an attempt to keep HR = 60–80, and systolic BP = 90–110 mmHg. On emergence from anesthesia, the dose requirement for esmolol increased markedly, from 132 µg·kg⁻¹·min⁻¹ to 310 µg·kg⁻¹·min⁻¹ (fig. 2). Prior to extubation, laryngoscopy was considered in order to check for edema or vocal cord paralysis, but because of our concern that the additional stimulation might precipitate cardiac manifestations of thyrotoxicosis, we elected to remove the endotracheal tube without laryngoscopy. Instead, the patient was observed in the operating room for several minutes for signs of airway obstruction after extubation. She was then transferred to the PACU. Pathological examination revealed a 370-g multinodular goiter.

In the PACU, the esmolol dose requirement initially increased to 351 µg·kg⁻¹·min⁻¹, when the BP and HR reached 170/90 and 100, respectively. Esmolol was then gradually decreased over the next 30 min to 211 µg·kg⁻¹·min⁻¹. Three hours later, propranolol, 80 mg PO was administered, and esmolol infusion was decreased to 102 µg·kg⁻¹·min⁻¹ soon thereafter. Ten hours postoperatively, esmolol was discontinued. She remained in the PACU overnight and was discharged to the floor the following morning. The postoperative course was uncomplicated except for mild hypocalcemia (7.4–8.0 mg/dl) which was treated successfully with calcium gluconate and calcium carbonate. No additional thyroid studies were performed. By the time of hospital discharge, her propranolol requirement had been reduced to 20 mg q 6 h.

Discussion

It is relatively unusual to encounter frank thyrotoxicosis in contemporary anesthesia practice, particularly since preoperative beta-adrenergic blockade is usually successful in ameliorating the signs and symptoms not adequately controlled by antithyroid medication. In this case, despite maximal medical therapy, including propranolol, our patient displayed chemical and clinical signs of thyrotoxicosis. The T3-RAI remained double the upper limit of normal and she continued to have symptoms of hyperthyroidism: fatigue, generalized muscle weakness, dyspnea, perspiration, nervousness, and emotional lability. Her resting HR of 84–88 and BP of 135/65 were worrisome because they were higher than would be expected for a patient receiving propranolol, 480 mg/day. In hyperthyroidism, resting heart rate does not give a reliable indication of the degree of β-blockade and perioperative thyroid crises have been reported in propranolol-treated patients.
patients with preoperative pulse rates of 90/min or less.6–8

To our knowledge, use of esmolol for control of perioperative thyrotoxicosis has not been described previously. The rapid onset of action and ultra-short duration of esmolol make it ideally suited for use as a continuous iv infusion in situations where sudden changes in sympathetic tone are expected.9 Since we doubted that the degree of preoperative \(\beta \)-blockade was adequate for our patient, it seemed prudent to begin the esmolol infusion as soon as she entered the operating room. It has long been recognized that simply the fear and anxiety of being transported to the operating room can induce thyroid storm.10,11 Likewise, we were able to adjust the degree of \(\beta \)-blockade to match the patient’s rapidly changing status before, during, and after anesthesia. Thus, it was possible to prevent tachycardia and hypertension that might otherwise have developed during laryngoscopy, intubation, surgical stimulation, and manipulation of the thyroid gland.5 Furthermore, we found the rapid titratability of esmolol to be helpful in treating the hypertension and tachycardia that developed briefly in the immediate postoperative period. Since the most likely time for presentation of thyroid storm is 6–18 h postoperatively,12 and since the patient required ongoing \(\beta \)-blockade postoperatively, the esmolol infusion was continued for a total of 10 h after surgery was completed.

Propranolol has long been one of the drugs of choice for preoperative preparation and management of thyrotoxicosis, yet there are several reasons why propranolol is not an ideal drug in this setting. Thyrotoxic patients display a wide variability in circulating concentrations of propranolol for any given oral dose.4 They require a higher dosage to obtain the same degree of \(\beta \)-blockade as normals,13 and plasma propranolol levels are 40–50% lower than normals receiving the same chronic oral dosage. These factors may explain the occasional failure of propranolol when used alone or in combination with antithyroid agents in preventing thyroid storm.4 Other factors, including age and smoking, are also known to influence the metabolism of propranolol. Our patient was both young, 19 yr, and a cigarette smoker; two factors associated with subtherapeutic propranolol levels.14 In fact, two previous reports of thyroid storm developing despite propranolol treatment occurred in patients who were 24 and 30 yr.7

In addition to the unpredictable and highly variable plasma levels resulting from a given propranolol dose, further problems with oral administration arise in the perioperative period. Delayed postoperative reinstitution of propranolol because of somnolence, nausea, or vomiting may result in a rapid decline in plasma levels, thus explaining the fact that thyroid storm most commonly occurs 6–18 h postoperatively.12 Intravenous propranolol may also be problematic; not only does it have a relatively slow onset, but it has a relatively long duration of action that may mask tachycardia indicative of postoperative hypoxemia or hypovolemia. In summary, in a rapidly fluctuating clinical condition, such as perioperative thyrotoxicosis, propranolol may be too short-acting to be effective when administered orally and too long-acting to be safe when administered intravenously.

To our knowledge, no studies have been performed examining the pharmacokinetics of esmolol in thyrotoxicosis. Esmolol is primarily metabolized by esterases, in blood and liver.9 Although the blood esterases appear to be the primary component responsible for esmolol elimination, the liver is also an important factor because blood esterases are synthesized in the liver.9 Also, the liver synthesizes plasma proteins which can bind esmolol and its metabolites.9 We found it necessary to exceed the manufacturer’s maximum dosage recommendation (300 \(\mu g \cdot kg^{-1} \cdot m^{-1} \)) for at least a short period of time in the postoperative period, and we suspect that higher-than-normal doses of esmolol may be necessary to control thyrotoxicosis, perhaps as a consequence of a generalized accelerated metabolic rate. The risk of high-dose esmolol is excessive myocardial depression. Recent work, both in patients with coronary artery disease and in normal humans, has shown that high doses of esmolol, >400 \(\mu g \cdot kg^{-1} \cdot m^{-1} \), cause impairment of left ventricular function.21,22 This was not evident, however, when our patient was being treated for hypertension and increased heart rate postoperatively.

A final advantage of esmolol is the fact that it is a selective agent for beta-1-adrenoceptor blockade. Thus, a number of reports have described the superiority of esmolol over propranolol when administered to patients at risk for bronchospasm due to beta-2-adrenoceptor blockade.15–17 In addition, esmolol has been shown to specifically block the beta-1 receptor effects of a generalized increase in sympathetic activity,17 whereas propranolol produces nonspecific beta-adrenergic blockade involving both cardiac and peripheral vascular beta adrenergic receptors.18–20

In conclusion, we found esmolol to be ideally suited for use in thyrotoxicosis, a clinical setting that requires rapid titration of \(\beta \)-blockade to control potentially life-threatening perioperative autonomic and hemodynamic fluctuations. When a thyrotoxic patient must undergo surgery, we recommend esmolol as an important adjunct to their anesthetic management.

‡ Morganroth J: Esmolol: An ultrashort-acting \(\beta \)-blocker for the ICU. Hospital Physician, May 1987, pp 22–32.

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931361/ on 11/06/2018
Severe Increase of Intracranial Pressure after Deflation of a Pneumatic Tourniquet

LCDR KELLY R. CONATY, M.C., U.S.N.,* LCDR MICHAEL S. KLEMM, M.C., U.S.N.R.†

The pneumatic tourniquet as first described by Cushing1 in 1904 to obtain a bloodless field is frequently used in orthopedic surgical procedures. Anesthesia for multiply injured patients is also a common occurrence.

We report a case of an acute severe increase in intracranial pressure after release of a pneumatic tourniquet for lower extremity surgery in a patient with multiple trauma including closed head injury.

REPORT OF A CASE

A 27-yr-old man involved in a motor vehicle accident was found unresponsive at the scene of the accident with dilated and unresponsive pupils, but with stable vital signs. The patient was transported to a nearby local hospital where his Glasgow Coma Score was 8 upon admission to the emergency room. His trachea was intubated, and hyperventilation instituted. After stabilization, which included iv administration of mannitol, he was transferred to our hospital. Injuries on admission included closed head injury, multiple lacerations and abrasions, right scapular fracture, right clavicular fracture, right second and third rib fractures, left humerus fracture, right tibia and fibular fractures, right hemo-pneumothorax, and hemo-peritoneum. On admission, the patient localized to pain, opened his eyes in response to

REFERENCES

Anesthesiology

The pneumonic tourniquet as first described by Cushing1 in 1904 to obtain a bloodless field is frequently used in orthopedic surgical procedures. Anesthesia for multiply injured patients is also a common occurrence.

We report a case of an acute severe increase in intracranial pressure after release of a pneumatic tourniquet for lower extremity surgery in a patient with multiple trauma including closed head injury.