this technique, the lower dose of lidocaine we describe could reduce the likelihood of local anesthetic toxicity in the event of tourniquet failure.

LELAND H. HANOWELL, M.D.
Assistant Clinical Professor

JEFFREY K. KANEFIELD, M.D.
Resident

SULPICIO G. SORIANO III, M.D.
Chief Resident

Department of Anesthesiology
University of California, Davis
2315 Stockton Blvd
Sacramento, California 95817

REFERENCE


(Accepted for publication August 12, 1989.)

In Reply.—We appreciate the interest and comments of Dr. Hanowell. As stated, we used bretyllum 1 mg/kg in 0.5% lidocaine. However, the usual volume for lower extremity procedures was 70 ml. With this volume, lidocaine toxicity should be less of a problem. Obviously the volume and concentration should be appropriate for the patient's size. We included the lidocaine because it was incorporated in previous iv regional blocks using other sympatholytics and because we were concerned about pain during the 50-min tourniquet inflation. Pain could also be produced by the initial norepinephrine release known to occur with bretyllum. The recommendation for 0.25% lidocaine is well taken although the question remains whether lidocaine is at all necessary. McKain has shown no prolonged sympatholytic effects of lidocaine in the iv regional technique, and therefore, we do not believe that the reduction of the concentration of lidocaine decreases its efficacy.

The lack of prolonged response in the four patients described by Hanowell et al. could be due to differences in patient population. Another possible explanation is that the tourniquet inflation times were of inadequate duration. Applying information from the basic science literature, it would seem that compared to an agent like guanethidine, a longer inflation time would be required to obtain adequate results. We use a minimum of 30 min. Our recent experience has been that even the responders to this technique initially need frequent therapy, i.e., every 3–4 days.

STEVEN R. FORD, M.D.
Assistant Professor

Department of Anesthesiology
The University of Texas Medical Branch at Galveston
Suite 2A, John Sealy Hospital
Galveston, Texas 77550-2778

(Accepted for publication August 12, 1989.)

Phrenic Nerve Block as a Complication of Local Anesthetic Infiltration for Internal Jugular Vein Catheterization

To the Editor.—Complications of internal jugular vein cannulation include carotid artery puncture,1,2 pneumothorax, and thoracic duct injury and lymph leak.3 We report on an additional complication of this technique.

A 58-yr-old female was admitted for cadaveric kidney transplantation. In preparation for the operation, a central venous catheter was inserted into the right internal jugular vein. The routine chest x-ray taken afterwards revealed elevation of the diaphragm at the side of the internal jugular vein catheterization. Fluoroscopic examination was performed showing a paradoxical movement of the diaphragm (fig. 1). A chest x-ray taken 3 h later showed both sides of the diaphragm at the same level. Reversible phrenic nerve block following infiltration with 5 ml of 2% lidocaine was suspected as the cause of the elevated diaphragm, and the patient underwent kidney transplantation the same day. The operation and the postoperative course were uneventful.

Many complications after internal jugular vein catheterization have been described.4-6 Phrenic nerve block as complication of percutaneous catheterization of the internal jugular vein apparently has not been reported before. The phrenic nerve originates from the cervical plexus, passes along the ventral side of the anterior scalene muscle, and may coincidentally be injured during percutaneous catheterization of the internal jugular vein. In the case reported, local infiltration of lidocaine is suspected of inducing phrenic paresis. This hypothesis is supported by the rapid resolution of the symptoms. However, mechanical compression by a hematoma cannot be ruled out.

Although this represents a rare complication of internal jugular vein catheterization, one should be aware of it especially in patients with severe pulmonary compromise on the contralateral side. Moreover, it further illustrates the importance of a chest x-ray before catheterization on the contralateral side after an unsuccessful attempt on one side. Furthermore, one should use only small quantities of local anesthetic, mainly to the skin and subcutaneous tissue, to avoid this problem.

To the best of our knowledge this is the first report of phrenic nerve paresis following internal jugular vein catheterization and thus should be added to the list of complications of central venous access.
Fig. 1. Chest X-ray after internal jugular cannulation showing elevation of the right diaphragm.

R. Schiessler, M.D.
M. Helmer, M.D.
J. Kovarik, M.D.
A. Luger, M.D.

Second Department of Internal Medicine
University of Vienna
Garnisongasse 13
A-1090 Vienna, Austria

REFERENCES


(Accepted for publication August 14, 1989.)