The Effect of Sodium Nitroprusside upon Platelet Function

To the Editor—Hines and Barash\(^1\) reported the important findings that sodium nitroprusside infusion increases bleeding time and decreases in vitro platelet aggregation. These data are consistent with the recent in vitro findings of other investigators,\(^2,3\) but the discussion presented by the authors does not address the most likely mechanism explaining their observations, and their conclusion that nitroprusside creates dysfunctional platelets is not accurate. Nitroprusside probably inhibits platelet aggregation through the same mechanism used by normal vascular endothelial cells in the modulation of hemostasis. Vascular endothelial cells are now known to release a labile substance (endothelial cell derived relaxing factor-EDRF) that relaxes vascular smooth muscle\(^4\) and inhibits platelet aggregation.\(^5\) This substance is very closely related to, or may be identical to, nitric oxide, which is considered to also be the active metabolite of nitroprusside.\(^6\)

These smooth muscle and platelet responses, induced by nitroprusside, EDRF, or nitric oxide take place through the activation of soluble guanylate cyclase and production of cyclic-GMP.\(^3,7\) Free hemoglobin, which binds EDRF and nitric oxide, abolishes the responses. Other organic nitrates, such as nitroglycerin or sodium nitrite, which use nitric oxide as their active metabolite, will probably also be found to decrease platelet aggregation.

Therefore, since the process of regulating platelet aggregation by endothelial cells can be considered physiological, the dysaggregation induced by nitroprusside cannot be considered platelet dysfunction but instead should be considered platelet inhibition.

With this in mind, a few questions arise that suggest several avenues for further study. First, since the nitrates and nitric oxide are very short acting, how long does the platelet inhibition persist following cessation of drug infusion?\(^\) Second, since this is the first study demonstrating an increase in bleeding time with the use of nitroprusside, and the findings may be due to vasodilatory effects of nitroprusside instead of the platelet effects, would the same alterations in bleeding times be seen with a non-nitrate vasodilator such as trimethaphan? And third, if the platelet effects are clinically significant and platelet aggregation can be inhibited in some controlled fashion, could nitrates be used as titratable drugs that may be indicated for episodes of undesired platelet aggregation such as DIC, acute myocardial infarction, or stroke?

REFERENCES


In Reply—Drs. Rivers and Johns have misstated our conclusion. Careful reading of our paper would reveal that we described the effect of sodium nitroprusside on platelet function as one of inhibition.\(^1\)

"In summary, in situations in which SNP therapy is administered, the clinician must be aware of the potential for the inhibition (italics added) of platelet aggregation."\(^2\)

Indeed, we employ the term inhibition throughout the Discussion. The use of dysfunction in the title refers to the global process of platelet function: adherence, aggregation, and release.

Rivers and Johns raise an intriguing alternative hypothesis to account for the observed inhibition. However, the reports cited in their letter do not make the critical link to establish the EDRF hypothesis.

We too were concerned about hemodynamic effects of SNP on the bleeding time. In designing the study, patients in the control group (fentanyl anesthesia without SNP administration) had mean arterial pressure maintained at the same level as the SNP treated patients (MAP = 80 mmHg). In a subsequent study, we are preparing for publication, the effect of trimethaphan infusion under similar clinical and experimental conditions (as our SNP study) was evaluated. Using trimethaphan infusions 1–4 mg/min, we were unable to demonstrate abnormalities in bleeding time or platelet inhibition as assessed by ADP and epinephrine challenge. These results argue against a vasodilating effect, as responsible for the increase in bleeding time seen with SNP.

Due to the clinical situation (patients had to be studied before initiation of cardiopulmonary bypass), our protocol did not allow for evaluation of return of platelet aggregation. Obviously, if reversal of platelet inhibition is possible, then a new therapeutic spectrum is opened for the clinician employing nitrate therapy. The prospect of using platelet inhibitory effect of nitrates in the treatment of TIA, myocardial infarction, or other hypercoagulable vascular states is an exciting one that has been previously addressed. Certainly, this is an area that warrants further laboratory and clinical investigation.
Another Cause for a Leak in a Disposable Breathing Circuit

To the Editor—One of the most common and serious mishaps in anesthetic practice is a disconnection of the patient breathing circuit. A mandatory part of each anesthesiologist's daily checklist, therefore, should include a full inspection of the breathing circuit for leaks or disconnections.

The case we present is that of a patient scheduled for elective inguinal herniorrhaphy under general anesthesia. Prior to anesthetic induction, the patient breathed oxygen via a mask supported by a tube holder or "Christmas tree." After intravenous induction of anesthesia, positive pressure ventilation by mask was attempted. We were surprised to hear a large leak in a breathing system that had just been checked. The circuit was again examined and no disconnection or other abnormality was found. On closer inspection, however, a large slit-shaped hole was discovered in the breathing circuit tubing at the site where it was held in place by the tube holder (fig. 1). A new breathing circuit was quickly substituted and the patient's lungs were then successfully ventilated. The trachea was intubated without difficulty and the remainder of the case proceeded uneventfully.

On inspection, we found the edges of the tube holder to be slightly sharp, but we also noted that the tubing from which the breathing circuit was fabricated was quite thin. We recommended a check of these tube holders for sharp edges. They can be easily smoothed with a file.

Disposable breathing circuits may be significantly less durable than reusable circuits. Their acute malfunction will interfere with adequate ventilation of the patient's lungs and may therefore pose a challenge to safe patient management, even immediately after a thorough check of the breathing circuit has been completed.

MITCHEL B. SOSIS, M.D., PH.D.
Assistant Professor of Anesthesiology

MICHAEL N. PAYNE, M.D.
Resident of Anesthesiology

Indiana University School of Medicine
Fesler Hall 204,
1120 South Drive
Indianapolis, Indiana 46223

(Accepted for publication July 31, 1989.)

FIG. 1. The slit-shaped laceration of the corrugated patient breathing circuit made by the tube holder can be seen.