free epidural morphine sulfate. An epidural infusion of a solution containing 0.125% bupivacaine HCl and 0.002% morphine sulfate was begun at a rate of 10 ml/h.

The next morning, he complained to his nurse of “blurred vision.” At this point, he had received a total epidural morphine dose of 5.2 mg. He was free of pain and had full motor function of his lower extremities. Upon further questionning, the patient stated he had “dou-

ble vision.” Examination revealed a vertical nystagmus in both eyes, with the fast component in the downward direction. Because the visual disturbance was troubling the patient, naloxone 100 μg was given intravenously. This diminished but did not completely resolve his symptoms. Ten minutes later an additional 100 μg naloxone was adminis-
tered intravenously. This resulted in a complete and permanent relief of the nystagmus and his symptoms. The epidural bupivacaine/mor-

phine infusion was continued until the next morning, when the patient was discharged to the ward. His symptoms did not return, nor did he complain of pain while in the recovery room. The only other medication he had received in the recovery room was cefazolin.

Previous to this astute observation by Fish and Rosen,¹ nystagmus had not been identified as a possible side effect of epidural opioids.

Hopefully, these reports will stimulate other physicians to be alert for similar problems in patients treated with epidural opioids.

ROM A. STEVENS, M.D.
Assistant Clinical Professor of Anesthesiology
NIGEL E. SHARROCK, M.B., CH.B.
Assistant Clinical Professor of Anesthesiology
Director of Anesthesia
The Hospital for Special Surgery
Cornell University Medical College
New York, New York 10021

REFERENCE

(Accepted for publication November 14, 1990.)

Routine Testing for Latex Allergy in Patients with Spina Bifida Is Not Recommended

To the Editor:—Moneret-Vautrin et al.,¹ in their discussion of three cases of intraoperative anaphylaxis in children with spina bifida, state that “prick tests and RASTs are reliable for detecting latex allergy.” They conclude that such tests should be performed preoperatively on all patients with spina bifida.

Unfortunately, there are no studies to support this statement. We do not yet know the prevalence of clinical rubber allergy in patients with spina bifida; recent surveys² suggest that it is between 18 and 28%. Türkanmaa et al.³ have found that the commercially available latex RAST is only 53% sensitive, and no sensitivity or specificity data are available for percutaneous latex testing. We therefore have no data whatever on the predictive value of these tests.

Until prospective studies identify the risk factors and predictors of intraoperative anaphylaxis, physicians must continue to rely on tools that are of demonstrated efficacy. We must obtain accurate histories from our patients, and carefully inquire of patients with spina bifida and their parents whether there have been any unusual, idiopathic, or perioperative allergic reactions in the past. Patients with such a history should be offered preoperative prophylaxis against immediate hypersensitivity reactions and should be spared, whenever possible, unnecessary cutaneous and parenteral exposure to natural rubber products.

JAY E. SLATER, M.D.
Assistant Professor of Pediatrics
Department of Allergy and Immunology

Lucille A. Mostello, M.D.
Assistant Professor of Pediatrics and Anesthesiology
Department of Anesthesiology
Children’s National Medical Center
111 Michigan Avenue, N.W.
Washington, D.C. 20010-2970

REFERENCES

(Accepted for publication November 14, 1990.)

In Reply:—Slater and Mostello rightly question the specificity and the sensitivity of these prick-tests because until now no data have been available. We have studied 907 physicians, surgeons, nurses, and hospital employees using both a questionnaire and prick test to a latex emulsion.⁴ In 18 cases, allergy to latex was suspected on the basis of clinical symptoms. Prick tests in all 18 were positive (sensitivity 100%). In 889 subjects with a negative clinical history, 883 prick tests were negative (specificity approximately 99%). In 3 of the 6 subjects with a
negative history and positive prick-test, a use test was performed and
positive in one case showing that, at least in this case, the prick test
was not a false positive. These results were obtained with the use of
a colloidal suspension or prevaccinated rubber particles. Sensitivity
may not be as good with prick tests through latex gloves, and the
residual allergenicity of latex may even depend on different brands of
gloves. The high sensitivity of prick tests to latex is based on the
nature of allergens, which are natural proteins, as is the case for in-
halants or food allergens.

Using prick tests to latex, we have started prospectively testing chil-
dren with spina bifida. In the first eight children tested without any
history of allergy to latex, prick tests were positive in four and con-
firmed by positive RAST, ranging from 0.36 to 2.45 PRU/ml. In other words,
the possibility of predicting latent sensitization to latex seems good
with prick tests. We agree with Dr. Slater and Dr. Mostello that the
risk of intraoperative anaphylaxis cannot be precisely defined even
when latent sensitization has been detected. But approximating this
risk may be important in light of similar studies examining the risk of
anaphylaxis during chemonucleolysis with chymopapain: in patients
with positive prick tests to chymopapain, five of six experienced ana-
phylaxis (versus 5 of 282 patients with negative tests).3

D. ANNE MONERET-VAUTRIN, M.D.
Head of the Department of Clinical Immunology and Allergy

References

1. Beaudouin E, Pupil P, Jacson F, Laxenaire MC, Moneret-Vautrin
 DA: Allergie professionnelle au latex: Enquete prospective sur
 907 sujets du milieu hospitalier. Rev Fr Allergol 30:157–161,
 1990
2. Turjanmaa K, Laurila K, Makinen-Kiljonen S, Reunala T: Rubber
 contact urticaria: Allergic properties of 19 brands of latex
3. McCullogh JA, Canham W, Dolovich J: Skin testing for chymo-
papain allergy: A preliminary report. Ann Allergy 55:609–611,
 1985

(Accepted for publication November 14, 1990.)

Anesthesiology
74:392, 1991

Getting the Bugs Out

To the Editor:—The preoperative anesthesia visit has been shown to
be as important as some premedication in allaying anxiety.1,2 However,
it is not uncommon to overhear entomologic references such as, “Here’s
a little bee sting” (little?) or “Here comes a Texas mosquito bite”
(Texas?) preceding local anesthetic infiltration. Such comments may
reverse the rapport you have tried to establish. Why bring bugs into
our work place?

Fear of insects is widespread. Who can forget the many horror movies
starring giant bugs or swirling insects? Warnings abound of killer
bees migrating to the United States. Approximately 1 in 100 persons
is sensitized to Hymenoptera (bees, wasps, and hornets) venom,3 and
the other 99 all know you can die from a bee sting. There are at least 40
deaths per year in the United States from Hymenoptera stings and serious
nonfatal reactions in 1–10 persons per 100,000 per yr.4,5 In one study,6
4,992 Boy Scouts were surveyed for previous stings; an incidence of
systemic reactions of 0.4% was found.

Mosquitoes raise thoughts of uncleanliness and malaria and equine
encephalitis and have been investigated (though rejected) as a vector
for HIV transmission.7,8 Besides, do mosquito bites sting and burn like
local anesthetics? That may confuse your patient and decrease trust.

Let us simply state, “I am going to numb this area with some local
anesthesia now. It may hurt for a moment.” For small areas, such as
for intravenous placement, multiple-dose solutions such as saline may
be used and do not cause pain on injection.

The anxiety associated with insect bites may be greater than the
benefit of such analogies.

LOREN J. JASSY, M.D.
Department of Anesthesia

References

1. Egbert LD, Battit GE, Turndorf H, Beecher HK. The value of
 the preoperative visit by an anesthetist. JAMA 185:555–555,
 1965
2. Leigh JM, Walker J, Janaganathan P. Effect of preoperative an-
3. Fath JJ, Cerra FB. The Therapy of Anaphylactic Shock. Drug
 Intell Cln Pharm 18:14–21, 1984
4. Reisman RE. Insect allergy. Allergy Principles and Practice. Vol-
 ume 2. 3rd edition. Edited by Middleton E Jr., Reed CE, Ellis
 EF, Adkinson NF Jr., Yunginger JW. St Louis, The CV Mosby
 Co., 1988, p 1345
5. Barnard JH. Studies of 400 Hymenoptera sting deaths in the
6. Settipane GA, Boyd GK. Prevalence of bee sting allergy in 4992
7. Webb PA, Hopp CM, Maupin GO, Johnson BJB, Ou C, Monath
 TP. Potential for insect transmission of HIV: Experimental ex-
 posure of Cimex hemipterus and Tsewchasynchites ambienesis to hu-
 1095, 1986

(Accepted for publication November 19, 1990.)

Mercy Hospital and Medical Center
4077 Fifth Avenue
San Diego, California 92103-2180