VENTILATOR SWITCH

ON-OFF SWITCH

Fig. 1. Drager model 2A anesthesia machine controls.

Spinal Anesthesia in Infants: Could a L5–S1 Approach Be Safer?

To the Editor—Recently Wright et al.1 described four cases of high spinal anesthesia in former premature infants. The authors highlighted factors related to the extension of the block, i.e., baricity, position, total dose, volume of cerebrospinal fluid, volume of the anesthetic solution, and the rate of injection. However, we believe that in neonates the level at which dural puncture is performed plays a crucial role in governing the height of the spinal block. In all the infants, lumbar puncture was performed in the L3–L4 interspace.

Wright et al.1 stated that because the spinal cord and canal in infants are much shorter than in adults, small differences in the extent to which the solution ascends with injection could make a significant difference in the height of the block. We agree and suggest that a low approach, such as below the intercristal line (which in neonates is mainly L3–S1), may reduce the possibility of high spinal blockade.

In addition, lumbar puncture at L3–L4 increases the risk of damaging the spinal cord, which is said to extend further caudad in small children.

WALTER G. MAURER, M.D.
Staff Anesthesiologist
The Cleveland Clinic Foundation
9500 Euclid Avenue
Cleveland, Ohio 44106

PAOLO BUSONI, M.D., L.D.
Professor of Anesthesiology
ANDREA MESSERI, M.D.
Department of Anesthesia and Intensive Care
A. Meyer Children Hospital
Firenze, Italy

REFERENCES

(Accepted for publication June 12, 1991.)