Hypothermia and Serum Potassium Concentration

To the Editor—In the northern states during the winter months, hypothermia from environmental exposure is frequently encountered. The survival and extent of recovery in people who become severely hypothermic is difficult to predict. A recent study suggested that high concentrations of serum potassium in severely hypothermic patients are an ominous prognostic sign, a "marker of death." This issue can have significant impact on anesthesiologists who are involved with resuscitation of hypothermic patients in the emergency department or the operating room. A better understanding of potassium homeostasis during hypothermia can help explain the adverse outcome in hypothermic hypokalemia patients.

One would expect to find hyperkalemia in severe hypothermia because of progressive acidosis and decreased sodium-potassium adenosine triphosphatase (Na⁺, K⁺-ATPase) activity, the major enzyme maintaining intracellular K⁺ concentration. However, the opposite usually is found. As hypothermia deepens, there is a progressive decrease in serum [K⁺]. We recently reported in animals a nonlinear relationship between decrease in body temperature and decrease in serum [K⁺] during acute cooling, as well as return to normal serum [K⁺] after rewarming. We also demonstrated that correcting serum [K⁺] in hypothermic hypokalemic rats resulted in severe hyperkalemia on acute rewarming. Similar results have been presented by Kohl et al. in humans.

Decrease in serum [K⁺] in mild hypothermia (from 35–31°C) may be attributed to increased sympathetic tone and stimulation of β-adrenergic receptors. The decrease of serum [K⁺] in deeper hypothermic stages (28°C and lower) cannot be explained by this β-adrenergic mechanism because nonselective β-blockade does not affect hypokalemia at 28°C when compared to non-β-blocked animals. Also, urinary loss of K⁺ is not a factor since bilateral ureter ligation or nephrectomies in animal studies did not inhibit the hypokalemia response to hypothermia. Moreover, deep hypothermia induces acidosis, which is expected to increase serum [K⁺] mildly, suggesting that acid-base imbalance is not the mechanism responsible for hypokalemia. Shida et al. also showed the lack of correlation between metabolic acidosis during hypothermia and serum [K⁺]. Kanter postulates that in deeper stages of hypothermia, intracellular pH decreases relatively more than does extracellular pH, with a resultant extracellular movement of H⁺ and intracellular movement of K⁺. This theory is contrary to findings of depleted intracellular [K⁺] in myocardial and skeletal muscle in hypothermia, which would be consistent with the decrease in ion exchange across cell membranes in the energy-depleted state of severe hypothermia.

The exact mechanism of hypokalemic hyperkalemia is little understood. Increased [K⁺] in liver cells during hypothermia indicates that this organ may have a prominent role in K⁺ homeostasis. The ability of hepatocytes, despite decreased energy stores, to increase intracellular [K⁺] compared to other tissues may be due to insulin. Insulin, a known potent stimulator of membrane Na⁺, K⁺-ATPase is found in high concentrations around hepatic portal areas.

In the context of the above findings, we hypothesize that the pathogenesis of hypothermic hyperkalemia may lie in the failure of hepatic uptake of extracellular K⁺. In addition, severe tissue injury by deep and prolonged hypothermia may irreversibly damage membranes, leading to massive release of intracellular K⁺, overwhelming any mechanism that is responsible for maintaining K⁺ balance. Thus, hyperkalemia in hypothermia may indicate of a more severe and irreversible stage of tissue destruction, whereas hypokalemia indicates that cellular mechanisms for maintaining K⁺ homeostasis are still functioning.

JURAJ SPRUNG, M.D., PH.D.
Resident in Anesthesiology
EUGENE Y. CHENG, M.D.
Associate Professor of Anesthesiology and Medicine
ZELJKO J. BOSNJAK, PH.D.
Professor and Director
The Laboratory of Cellular Biology
Departments of Anesthesiology and Physiology
Medical College of Wisconsin
8701 Watertown Plank Road
Milwaukee, Wisconsin 53226

REFERENCES

(Accepted for publication April 1, 1991.)