Effects of Anemia on Pulse Oximetry and Continuous Mixed Venous Hemoglobin Saturation Monitoring in Dogs

Steven Lee, M.D.,* Kevin K. Tremper, Ph.D., M.D.,† Steven J. Barker, Ph.D., M.D.‡

The accuracy of pulse oximetry (for pulse hemoglobin oxygen saturation [\(S_{\text{PO}_2}\)] and mixed venous hemoglobin oxygen saturation [\(S_{\text{VCO}_2}\)]) was assessed during progressive normovolemic anemia in dogs. Splenectomized mongrel dogs under general anesthesia were monitored with a three-wavelength pulmonary artery oximeter catheter (10 dogs) and a pulse oximeter (11 dogs). Data were collected while fractional inspired oxygen concentration (\(F_{\text{I}O_2}\)) was varied from 1.00 to 0.05 in seven steps. The dogs then underwent isovolemic hemodilution, and the \(F_{\text{I}O_2}\) was again varied. This sequence continued until data no longer could be obtained. The accuracy of each device was assessed by determining the bias (the average difference between the continuous monitor oximeter and the bench oximeter) and the precision (the standard deviation of the difference). For the three-wavelength Oximetrix catheter (for hemoglobin oxygen saturation denoted here \(S_{\text{O}_2}\)), the overall bias \((S_{\text{O}_2} - S_{\text{PO}_2})\) and precision were \(-0.7 \pm 8.6\%\) for the 193 data points. The accuracy as assessed by bias and precision for \(S_{\text{PO}_2}\) was similar for hematoctrits of 40–15%. (Bias ± precision was \(2.1 \pm 5.7\%\) for hematoctrits greater than 40%, and \(-1.1 \pm 7.5\%\) for hematoctrits of 15% to 19%). At hematoctrits between 10 and 14%, the precision worsened to 12%, and for hematoctrits less than 10% the bias ± precision was \(-11.5 \pm 11.8\%\). The overall \(S_{\text{PO}_2}\) accuracy was \(0.2 \pm 7.6\%\) for 178 points. The pulse oximeter's accuracy was similar, down to hematoctrits of 10%. Below 10%, the bias and precision worsened to \(-5.4 \pm 18.8\%\). In some instances, a reliable pulse oximeter reading was not obtained, as evidenced by pulse oximeter pulse rate in disagreement with ECG heart rate. The frequency of these failures increased with decreasing hematoctrit, especially at hematoctrits less than 10%. We found that both of the continuous saturation monitoring techniques maintained acceptable accuracy at hematoctrits as low as 10–15%. For both techniques, accuracy became unacceptable when the hematoctrit was less than 10%. (Key words: Blood, hemoglobin: saturation; anemia. Monitoring: oximetry.)

The accuracy of pulse oximetry for hemoglobin oxygen saturation denoted here \(S_{\text{O}_2}\), \(S_{\text{O}_2}\) has become a standard for intraoperative monitoring since the development of pulse oximetry (for hemoglobin oxygen saturation denoted here \(S_{\text{PO}_2}\)) in the early 1980s. The same time period has seen an increased awareness of the infectious risks of blood products, resulting in a tendency to withhold blood transfusion until absolutely necessary. Thus, arterial and venous \(S_{\text{O}_2}\) will be used with increasing frequency on patients with hematoctrits less than normal. Theoretically, there should be a hemoglobin level below which the oximeter does not have sufficient signal to determine the hemoglobin saturation. However, few data have been published on the possible effects of decreasing hemoglobin concentrations on the accuracy of these monitors.1,2,§ The purpose of this study was to determine the accuracy in dogs of two different types of \(S_{\text{O}_2}\) oximeters, the noninvasive transmission pulse oximeter and the invasive reflectance pulmonary artery oximeter, under the conditions of normovolemic anemia.

Materials and Methods

This study was approved by the University Animal Research Committee. Eleven mongrel dogs weighing 10–20 kg received 0.3 mg/kg intramuscular acepromazine, and intravenous access was established in a forelimb vein. Anesthesia was induced and maintained by intermittent boluses of pentobarbital 10–20 mg/kg. Pancuronium 0.1 mg/kg was given only if shivering occurred. After induction of anesthesia and tracheal intubation, the animal's lungs were mechanically ventilated to produce normocapnia. A femoral cutdown established access for a 16-G arterial catheter and an 8.5-Fr venous introducer. The 7.5-Fr Oximetrix P7110 Shaw Opticath pulmonary artery catheter (Abbott Laboratories, Mountain View, CA) was calibrated in vitro as recommended by the manufacturer and then inserted to a wedge position by observing the pressure waveform. Oximetrix catheters were inserted in 10 of the 11 dogs. A disposable Nellcor finger probe (model D25) was applied to the tongue and secured with a towel clamp. The sensor was connected to the N-100 pulse oximeter (Nellcor, Hayward, CA). Each data set

OVER THE PAST DECADE techniques have been developed for continuous monitoring of arterial \(S_{\text{O}_2}\) and mixed venous hemoglobin oxygen saturation \(S_{\text{VCO}_2}\). \(S_{\text{VCO}_2}\) is monitored by analyzing a reflected light signal transmitted through fiberoptic bundles incorporated into a pulmonary artery catheter (for hemoglobin oxygen saturation denoted here \(S_{\text{O}_2}\)). \(S_{\text{O}_2}\) has become a standard for intraoperative monitoring since the development of pulse oximetry (for hemoglobin oxygen saturation denoted here \(S_{\text{PO}_2}\)) in the early 1980s. The same time period has seen an increased awareness of the infectious risks of blood products, resulting in a tendency to withhold blood transfusion until absolutely necessary. Thus, arterial and venous \(S_{\text{O}_2}\) will be used with increasing frequency on patients with hematoctrits less than normal. Theoretically, there should be a hemoglobin level below which the oximeter does not have sufficient signal to determine the hemoglobin saturation. However, few data have been published on the possible effects of decreasing hemoglobin concentrations on the accuracy of these monitors.1,2,§ The purpose of this study was to determine the accuracy in dogs of two different types of \(S_{\text{O}_2}\) oximeters, the noninvasive transmission pulse oximeter and the invasive reflectance pulmonary artery oximeter, under the conditions of normovolemic anemia.

Materials and Methods

This study was approved by the University Animal Research Committee. Eleven mongrel dogs weighing 10–20 kg received 0.3 mg/kg intramuscular acepromazine, and intravenous access was established in a forelimb vein. Anesthesia was induced and maintained by intermittent boluses of pentobarbital 10–20 mg/kg. Pancuronium 0.1 mg/kg was given only if shivering occurred. After induction of anesthesia and tracheal intubation, the animal's lungs were mechanically ventilated to produce normocapnia. A femoral cutdown established access for a 16-G arterial catheter and an 8.5-Fr venous introducer. The 7.5-Fr Oximetrix P7110 Shaw Opticath pulmonary artery catheter (Abbott Laboratories, Mountain View, CA) was calibrated in vitro as recommended by the manufacturer and then inserted to a wedge position by observing the pressure waveform. Oximetrix catheters were inserted in 10 of the 11 dogs. A disposable Nellcor finger probe (model D25) was applied to the tongue and secured with a towel clamp. The sensor was connected to the N-100 pulse oximeter (Nellcor, Hayward, CA). Each data set

118

* Assistant Clinical Professor, Department of Anesthesiology, University of California, Irvine.

† Professor, Department of Anesthesiology, University of Michigan.

‡ Associate Professor, Department of Anesthesiology, University of California, Irvine.

Received from the Department of Anesthesiology, University of California, Irvine, Orange, California, and the Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan. Accepted for publication March 11, 1991. Presented in abstract form at the meeting of the International Anesthesia Research Society, San Diego, California, 1988.

Address reprint requests to Dr. Tremper: Department of Anesthesiology, University of Michigan, 1500 Medical Center Drive, 1G323UH, Ann Arbor, Michigan 48109.

included heart rate, respiratory rate, core and rectal temperatures, systemic and pulmonary arterial pressures, cardiac output by thermodilution, inspired oxygen fraction (FIO2), end-tidal carbon dioxide, SAO2, SVO2, and arterial and mixed venous hemoglobin saturation by the N-100 (SPO2) and Opticath (SOXO2), respectively. The N-100 was considered to give a valid reading if the heart rate was within 5 beats per min of the ECG value. Arterial and mixed venous blood samples were obtained anaerobically for immediate analysis by an IL-282 co-oximeter set for canine hemoglobin (Instrumentation Laboratories, Lexington, MA) and an ABL-2 blood gas machine (Radiometer, Copenhagen, Denmark). Both bench instruments were calibrated daily. Hematocrit was determined for each data point as the mean of three samples by spun capillary tube.

To test the response of the oximeters, the fractional inspired oxygen concentration (FIO2) was varied in steps from 1.00 to 0.05 (1.00, 0.40, 0.24, 0.18, 0.14, 0.10, and 0.05) using nitrogen. The lower limit of FIO2 was increased at lower hematocrits if the dog was hemodynamically unstable. Fifteen minutes was allowed to attain equilibrium at each FIO2 before data were sampled. Following measurements at the lowest FIO2, the FIO2 was increased to 1.0 prior to isovolemic hemodilution. Hemodilution was accomplished by removing 20–30 ml/kg of blood and replacing it 3:1 with crystalloid or 1:1 with colloid. Pulmonary artery pressures were maintained near baseline values. Sampling was then continued by varying FIO2 at the newly established hematocrit. The cycle of varying FIO2 and stepwise hemodilution was continued until data were no longer obtainable. Normothermia was maintained with a heating blanket, warmed intravenous fluids, and hot water bottles placed on the thorax and abdomen. It became apparent after the first three dogs were studied that their spleens are very effective in autotransfusion. The hematocrit gradually increased as the FIO2 was decreased at hematocrits less than 20%, necessitating further hemodilution for each sampling point. This problem led us to perform splenectomies upon the remaining dogs before any data were collected.

The accuracy of the two in vivo oximeters was determined by comparison with the IL-282 co-oximeter using the method described by Bland and Altman. The bias or systematic error is defined as the mean difference between the in vivo oximeter reading and the IL-282 co-oximeter. Precision or random error is defined as the standard deviation of those differences. Actually, as originally described by Bland and Altman, the bias is defined as the "gold standard" minus the "new method." For the current study, the bias therefore was the mean of the IL-282 co-oximeter minus the in vivo monitor's reading. Therefore, if the new method underestimates the standard method, the bias will be positive. Unfortunately, this procedure is not consistent with the presentation of data in the United States literature. It also seems more intuitive if a negative bias means an underestimation by the new method and a positive bias means an overestimation by the new method. For that reason, we have defined bias in the current study as the mean of the "new method" minus the "gold standard."

Percent hemoglobin oxygen saturation from the IL-282 co-oximeter represents fractional saturation defined as 100% × HbO2/(HbO2 + Hb + HbCO + Hbmet), where HbO2, Hb, HbCO, and Hbmet represent oxyhemoglobin, reduced hemoglobin, carboxyhemoglobin, and methemoglobin, respectively. All blood samples in this study contained less than 1% Hbmet or HbCO.

Results
The bias and precision data are presented in table 1 for the two monitors for hematocrits ranging from >40 to <10%. The results are illustrated in figures 1 and 2 for the pulse oximeter and the oximeter catheter, respectively. In these figures bias values are plotted as a function of hematocrit, and the vertical hash marks represent ±1 precision (standard deviation of the bias). For the pulse oximeter, an overall bias of 0.2 ± 7.6% was obtained. The bias and precision values were relatively constant over the entire range until the hematocrit decreased to <10%. Because the dogs could not tolerate the combined insults of severe anemia and arterial hemoglobin desaturation, there were fewer data in the lowest hematocrit range. As noted in table 1, one of the seven data

<table>
<thead>
<tr>
<th>Hematocrit (%)</th>
<th>Bias (%)</th>
<th>Precision (%)</th>
<th>Number of Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nellcor N-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>0.8</td>
<td>5.9</td>
<td>28</td>
</tr>
<tr>
<td>10-14</td>
<td>0.3</td>
<td>7.8</td>
<td>23</td>
</tr>
<tr>
<td>15-19</td>
<td>1.2</td>
<td>6.8</td>
<td>28</td>
</tr>
<tr>
<td>20-24</td>
<td>5.5 (8.6)</td>
<td>7.4 (5.9)</td>
<td>11 (10)</td>
</tr>
<tr>
<td>25-29</td>
<td>0.4 (3)</td>
<td>11.5 (4.3)</td>
<td>10 (9)</td>
</tr>
<tr>
<td>30-34</td>
<td>0.2</td>
<td>7.6</td>
<td>178</td>
</tr>
<tr>
<td>35-39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hematocrit (%)</th>
<th>Bias (%)</th>
<th>Precision (%)</th>
<th>Number of Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oximetry Opticath</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>2.1</td>
<td>5.7</td>
<td>193</td>
</tr>
<tr>
<td>10-14</td>
<td>2.5</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>15-19</td>
<td>1.5</td>
<td>3.4</td>
<td>11</td>
</tr>
<tr>
<td>20-24</td>
<td>3.9</td>
<td>27*</td>
<td></td>
</tr>
<tr>
<td>25-29</td>
<td>0.2</td>
<td>2.9</td>
<td>25</td>
</tr>
<tr>
<td>30-34</td>
<td>1.1</td>
<td>7.3</td>
<td>39</td>
</tr>
<tr>
<td>35-39</td>
<td>2.9</td>
<td>5.5</td>
<td>25</td>
</tr>
<tr>
<td>>40</td>
<td>2.1</td>
<td>5.7</td>
<td>193</td>
</tr>
</tbody>
</table>

Data in parentheses exclude conspicuous outlier data points.

* Mixed venous blood sample error.
points in the lowest hematocrit range was a significant outlier. When this point was removed from the calculations, the bias and precision for this range demonstrate the same accuracy as in the other ranges of hematocrit. This also occurred at the higher hematocrit range (table 1). Although the accuracy of the pulse oximeter did not appear to be substantially affected by hematocrit, the signal failure rate was affected by it. (A pulse oximeter failure was defined by either the inability to detect a signal or by a difference between pulse rate and heart rate of greater than 5 beats per min.) Figure 3 illustrates that the pulse oximeter failure rate increased with decreasing hematocrit. Curiously, the data with hematocrits >40% also had a high failure rate.

The oximeter catheter also demonstrated relatively consistent accuracy over a wide range of hematocrit (table 1 and fig. 2). An overall bias of 0.7 ± 8.6% was obtained from 195 data points. The accuracy deteriorated significantly when the hematocrit decreased to <10%. There were no "signal failures" with the Oximetrix catheter, but one mixed venous blood sample was erroneous (table 1).

Although the bias values for both of these monitors over much of the hematocrit range were close to zero, the precision values demonstrate significant random error. The limits of agreement have been defined as the bias ± 2 precision values. This is the range over which 95% of the data will lie. For most of the data this implied a range of greater than ± 10% (table 1).

Discussion

Theoretically, severe anemia is expected to affect the accuracy of oximeter monitors. Both the pulse oximeter and the mixed venous oximeter estimate relative concentrations of oxyhemoglobin by measuring the ratios of either reflected or transmitted light intensity. Hemoglobin in the reduced and oxidized forms has different absorbance and reflectance coefficients at the light frequencies used by these monitors. This difference produces a change in the intensity of the light signal relative to incident light as the proportions of oxidized and reduced hemoglobin change. In either case, in the absence of hemoglobin there should be no change in signal with changes in oxygenation. With very small concentrations of hemoglobin, this signal is expected to be small relative to the background noise.
A small signal-to-noise ratio usually leads to a less accurate measurement.

Early studies evaluating the accuracy of oximeters have used linear regression analysis to assess accuracy.1,6-10 The scatterplot presented in these reports and later studies that presented bias and precision show ranges of "accuracy" similar to those found in this study.11-15 Previous studies have also validated the application of data obtained from dogs to humans with respect to the absorption spectra of the two species' hemoglobins.1,12 The data from our study with dogs indicates that the accuracy of both oximeter monitoring devices is relatively independent of hematocrit, down to a range of 10-14\%. Below this hematocrit accuracy deteriorates. From the size of the precision values, one might also conclude that there is significant random error throughout the entire range of hematocrit when either device is used in dogs. Gettinger \textit{et al.} compared the accuracy of two \textit{SvO}$_2$ catheters during induced normovolemic anemia in dogs.1 They concluded that the catheter that uses two wavelengths of light (American Edwards) was less accurate than the Oximetrix catheter, which uses three wavelengths of light. Their study produced hemoglobin values down to a range of "less than 10 mg/dl" (hematocrit \textasciitilde 30\%). They did not report the actual values. They also did not report bias or precision data but performed regression analysis with correlation coefficients. Despite the high correlation coefficient they reported for the Oximetrix catheter (\(r = 0.99\)), their scatterplot plot showed significant random error.1 The current study confirms and extends the findings of Gettinger \textit{et al.} that the Oximetrix catheter provides \textit{SvO}$_2$ data that are relatively independent of hematocrit down to the hematocrit range of 10 to 15\%.

The accuracy of the Nellcor pulse oximeter also appears to be relatively constant down to a hematocrit range of 10-15\% (table 1 and fig. 1). At the extremes of hematocrit, the pulse oximeter failure rate increased (fig. 3). During severe anemia one expects the signal failure rate to increase because the pulse amplitude of absorbance decreases. It is not clear why the pulse oximeter failure rate increased when the hematocrit was >40\%. There were only 10 data points in this range, and all were collected from three dogs. After the induction of anesthesia and splenectomy in the other dogs, the first blood samples obtained all had hematocrits of 39\% or less. It is possible that this relative "polycythemia" in these dogs represented chronic disease that resulted in a diminished pulse as detected by the oximeter. These three dogs had twice the overall pulse oximeter failure rate compared to the other eight dogs. There may also have been problems associated with the attachment of the oximeter probe to the dog's tongue. All of these failures occurred during desaturation.

Few clinical data are available on the accuracy of \textit{SpO}$_2$ measurement in anemic patients. Severinghaus and Koh have presented accuracy data in adult volunteers during severe desaturation.2 Several of their subjects were mildly anemic (hemoglobin in the range of 10-12 g/dl), and one subject had a hemoglobin concentration of 8 g/dl. Multiple pulse oximeters were placed on these subjects as their \textit{SpO}$_2$ was reduced in a rapid fashion to approximately 50%. Their results demonstrated an increasingly negative bias with desaturation in the anemic subjects. In the most anemic subject, the mean pulse oximeter bias was \(-15\%\) at a saturation of 54\%.2 Figure 4 presents our animal data for the low saturation points, mean \textit{SpO}$_2$ = 53.9\% \pm 12.2\%. The bias showed a negative trend, from +15\% in the hematocrit range of 35-39\% to \(-6\%\) in the hematocrit range of 25-29\%. The bias remained slightly negative down to severe anemia (hematocrit <10\%), where the bias decreased further to \(-14\%\). Because the dogs could not tolerate a saturation of 50% with a hematocrit of only 10\%, there were only three data points during these combined insults.

These results demonstrate a trend similar to that found by Severinghaus and Koh2 but with quantitative differences. Our bias starts positive and decreases to \(-6\%\) over the same hematocrit range, whereas their data start with a slightly negative bias and decrease to \(-15\%\). Furthermore, these two studies differ dramatically in methods. Our animal study was conducted with the pulse oximeter of one manufacturer (Nellcor) on 11 dogs. Severinghaus and Koh collected data with 13 different pulse oximeters on a few mildly anemic human subjects. Our data were collected during steady state (15-min equilibrium), whereas their data were collected during a rapid, brief desaturation event. Despite these differences, the data from both studies demonstrate that anemia produces a
negative bias during desaturation. Clinically this may be protective, for it will make desaturation events appear more severe in anemic patients. There may also be a physiologic reason for these results. Presumably the tissues and capillaries of anemic subjects desaturate more quickly as SaO_2 decreases. The pulse oximeter may be detecting a portion of its signal from the blood in the desaturating microcirculation.

Both the invasive and the noninvasive oximeter monitors demonstrate surprisingly consistent accuracy over a wide range of hematocrit. The accuracy of both devices deteriorates as hematocrit decreases to <15% and becomes unacceptable at hematocrits of <10%. Although the bias values are small for both devices when hematocrits are >15%, the precision values demonstrate significant random error. It should therefore be kept in mind that individual data points may show significant error despite the overall accuracy of these devices.

References