Little Risk of Hyperosmolar Coma Following Hyperglycemia during Cardiopulmonary Bypass

To the Editor—In their review, Hirsch et al.¹ suggest that hyperglycemia during cardiac operation can lead to postoperative hyperosmolar coma. In the accompanying editorial, Alberti² states that a deleterious effect of intraoperative hyperglycemia is hyperosmolality but does not further define the adverse consequences of hyperosmolality. The references cited by Hirsch et al. fail to support a relationship between intraoperative hyperglycemia and postoperative hyperosmolar coma, and we have been unable to identify an adverse consequence of intraoperative hyperosmolality.³

Seki⁴ searched the world's literature and his personal experience to find twelve instances of hyperosmolar coma following cardiac operation. In his reported cases, an average of 10 days of unrelenting postoperative drug-induced diuresis coupled with a high osmolar load produced dehydration, hyperosmolality (average 383 mOsm/L), and coma. We⁵ recently reported osmolality data from 107 non-diabetic patients undergoing elective coronary artery bypass grafting, half receiving glucose-containing intravenous and priming solutions and half receiving glucose-free solutions. Despite glucose concentrations greater than 800 mg/dl during cardiopulmonary bypass in the glucose group, the maximum osmolality observed during operation was 313 mOsm/L. Hyperglycemia produced intraoperative diuresis, and by the end of operation, mean osmolality was 300 mOsm/L. The highest osmolality values during operation did not approach the values reported in hyperosmolar coma (370–390 mOsm/L) for the medical and surgical patients who suffered sustained fluid losses for days to weeks before developing coma.⁶ In patients undergoing cardiac operations with marked intraoperative hyperglycemia, it is highly unlikely that glucose-induced osmotic diuresis could be so severe as to produce dehydration and coma within 24 h. Seki's inability to find more than 12 instances of postoperative hyperosmolar coma suggests that this complication in cardiac patients is exceedingly rare. Our own experience of approximately 70,000 diabetic and non-diabetic patients undergoing cardiopulmonary bypass with glucose-containing priming and intravenous solutions confirms this rarity, since in no patient who failed to awaken after operation could the diagnosis of hyperosmolar coma be made. Although hyperosmolar coma is a well-known complication of uncontrolled diabetes, neither the authors of the review article nor the editorial documents any hazard of intraoperative hyperosmolality or even postulates how transient intraoperative hyperglycemia could lead to hyperosmolar coma in the early postoperative period.

Samuel Metz, M.D.
Division of Cardiovascular Anesthesiology
Texas Heart Institute
P.O. Box 20466
Houston, Texas 77025

References

(Accepted for publication August 2, 1991.)

In Reply—We thank Metz for his thoughtful comments regarding the risks of perioperative hyperglycemia and hyperosmolar coma in patients undergoing elective coronary artery bypass grafting. However, we must take issue with his statement that our references do not support a relationship between intraoperative hyperglycemia and postoperative hyperosmolar coma in diabetic patients. Brenner et al.¹ noted ten patients with hyperosmolar coma during a 2-yr period following surgery. Interestingly, three of these patients had coronary artery bypass surgery, and one of the conclusions from their study was that this surgical procedure is a risk factor for postoperative hyperosmolar coma.

With careful monitoring of diabetic patients during and after surgery as recommended in our review,² we would agree with Metz that hyperosmolar coma is indeed a rare event following coronary artery bypass surgery. While profound hyperglycemia did not produce a hyperosmolar state in non-diabetic patients undergoing elective coronary artery surgery,³ our review article³ and the accompanying editorial by Alberti⁴ discussed potential complications in patients with diabetes mellitus. How high would the blood glucose concentration and serum osmolality have risen in a diabetic population receiving a similar glucose load during cardiac surgery? Second, as Metz correctly points out, his patients were only slightly hyperosmolar and most certainly not dehydrated (the serum sodium was calculated to be 135 mmol/L based on a plasma glucose of 836 mg/dl and a serum osmolality of 315 mOsm/kg).

While we agree with LANIER's comment that "there is a large body of convincing data that glucose worsens outcome from cerebral ischemia,"⁴ hyperglycemia should be considered separately from hyperosmolality. Although osmolality cannot predict mortality in hyperosmolar coma,⁵ previous studies suggest that hyperosmolality may contribute to neurologic dysfunction.⁶⁷ Since adequate free water was adminstered intraoperatively to the patients studied by Metz and Keats,⁵ it is not surprising that they did not observe hyperosmolar coma. However,