The Effects of Halothane on Ventricular Tachycardia in Intact Dogs

John D. Gallagher, M.D.,* Cdyce A. McClernan, B.S.†

Halothane has either proarhythmogenic or antiarhythmic effects in a variety of clinical circumstances. This investigation tested the hypothesis that halothane would display different effects on ventricular tachycardia (VT) produced by different electrophysiologic mechanisms in intact dogs. Four models of VT produced by abnormal automaticity, reentry, delayed-afterdepolarization-induced triggered activity, and early-afterdepolarization-induced triggered automaticity (groups 1–4, respectively) were studied. In groups 1 and 2, the left anterior descending coronary artery (LAD) was ligated. In group 1 (n = 5), 24 h after LAD ligation and infarction, all dogs demonstrated incessant VT with 94.7 ± 2.3% of beats of ventricular origin. This ectopy presumably was due to abnormal automaticity. Halothane reduced the frequency of ventricular ectopy until at 2% halothane only 34.8 ± 15% of beats were of ventricular origin. One week after LAD ligation, programmed stimulation produced nonstimulated extrasystoles of presumably reentrant origin in six dogs. In three, halothane 1% abolished extrasystoles while increasing the ventricular refractory period by 23 ± 3.8% (P < 0.05). In the three other dogs, halothane had no effect (two dogs) or worsened the severity of VT (one dog), while the refractory period increased by 7.7% (P > 0.05). In group 3 dogs, ouabain was infused until VT secondary to triggered activity occurred. Halothane restored sinus rhythm in 4 of 5 dogs. Overall the percentage of sinus beats increased from 11.1 ± 2.8 to 97.4 ± 2.6% when halothane 2% was added during ouabain toxicity. Cesium chloride infusion increased the QT interval and produced complex VT in 5 dogs. In no experiment did halothane influence cesium chloride induced VT due to early afterdepolarizations or modify the QT prolongation produced by cesium (group 4). These experiments demonstrate that halothane has diverse effects on VT due to different cellular electrophysiologic mechanisms. (Key words: Anesthetics, volatile; halothane. Arrhythmia: long QT syndrome; reentry; ventricular tachycardia. Heart, electrophysiology: infarction. Pharmacology: ouabain, cesium.)

BECAUSE OF THE ABILITY of halothane to sensitize the heart to the arrhythmogenic effects of catecholamines, halothane traditionally has been considered an agent likely to produce intraoperative arrhythmias. However, halothane suppresses the arrhythmias associated with digitalis intoxication. This suggests that the effects of halothane on ventricular arrhythmias depend upon the specific mechanism responsible for the arrhythmia.

In experimental models, and presumably in humans, ventricular arrhythmias arise through a variety of pathologic mechanisms that can be identified by electrophysiologic testing. The effects of an antiarrhythmic drug on ventricular tachycardia (VT) produced in a well-defined model can give insights into the mechanisms responsible for the antiarrhythmic effect of the drug. Ultimately, such data may suggest the clinical circumstances in which the drug may be effective.

The goal of the present investigation was to determine the effects of halothane on VT produced in dogs by several experimental manipulations. Suspected VT mechanisms studied included abnormal automaticity, reentry, triggered activity, and triggered automaticity. The rationale for this investigation was two-fold. First, halothane and other general anesthetics are often administered to patients with histories of VT. Knowledge of the effects of halothane on specific mechanisms for VT could improve patient care. Second, because halothane has either proarrhythmic or antiarhythmic effects in different VT models, it would be helpful to clarify whether halothane will suppress a given arrhythmia.

Materials and Methods

The Institutional Animal Care and Use Committee approved this study. The experimental design was modeled after that used by Rosen et al. and LeMarec et al. Conditioned mongrel dogs were anesthetized with intravenous pentobarbital 30 mg/kg, and after tracheal intubation, the lungs were ventilated with room air using a mechanical ventilator. Muscle relaxants were not used. Through a left thoracotomy, bipolar left ventricular and left atrial pacing electrodes were placed, and a left atrial catheter was inserted for later administration of drugs and measurement of blood gases. Electrodes and catheters were exteriorized interscapularly. Additional surgical manipulations varied between groups as described below. After completion of surgery, dogs recovered in a monitored area, and when awake, the tracheas were extubated. After surgery, intramuscular morphine or butorphanol was administered for pain every 4 h and water was provided ad libitum.

Dogs in groups 1 and 2 underwent ligation of the left anterior descending coronary artery (LAD) just distal to the origin of the first diagonal branch. Ligation of the
HALOTHANE AND VENTRICULAR TACHYCARDIA

LAD produces four distinct stages of ventricular tachyarrhythmias.8-10 During phase 1, from 30 min to 1 h after LAD ligation, reentrant mechanisms in the ischemic zone are responsible for arrhythmias. Phase 2, from 1 to 4 h after ligation, is one of quiescence with few ventricular arrhythmias. In phase 3, from 4 to 48 h, abnormal automatic rhythms originate in partially depolarized cells in the ischemic border zone. During phase 4, beginning 4 d after LAD ligation, programmed electrical stimulation (PES) can induce reentrant VT. Our experiments dealt with rhythms occurring during phases 3 and 4.

GROUP 1: ABNORMAL AUTOMATICITY

Twenty-four hours after LAD ligation, survivors were placed in a sling. Four limb and one precordial ECG electrodes were positioned on the dog, and ECG leads 1, 2, and V1 were recorded (control recordings). Oxygen was then administered by mask and recordings repeated. In no case did administration of oxygen alter the arrhythmia. Halothane 0.5, 1, and 2% were then administered by mask in oxygen by way of a vaporizer calibrated with a mass spectrograph. Measurements were repeated after a minimum of 30 min at each halothane concentration. Animals breathed spontaneously, and left atrial blood gases were measured to avoid excessive hypercarbia (carbon dioxide tension ≥ 60 mmHg).

GROUP 2: REENTRANT VENTRICULAR EXTRASYSTOLES

Dogs that had undergone LAD ligation, including survivors of group 1, recovered for 1 week. Daily, the animals were placed in a sling and ECG leads placed for continued conditioning. On the day of the experiment, PES was performed to induce ventricular extrasystoles.11 After 8 beats of ventricular pacing (S1) at 300- or 500-ms cycle lengths (CL), a single premature extrastimulus (S2) was introduced at 10 ms less than the basic S1-S1 CL. S2 was then administered at increasingly premature intervals (by 10 ms) until effective refractoriness was reached. S2 was then fixed at 20 ms above the effective refractory period (ERP) and a second premature extrastimulus (S3) was introduced. From the basic S1-S1 interval, diastole was scanned at 10-ms intervals with an S3 extrastimulus until S3 ERP was reached. If nonstimulated extrasystoles were noted, these were presumed to be reentrant. Halothane 1% was administered to these dogs and the pacing protocol repeated. If reentrant beats were eliminated by halothane, diastolic scanning with an S4 beat also was performed, following a protocol analogous to that described above. For PES with S4, S3 was fixed at 20 ms above the S3 ERP. This protocol is similar to that used in other investigations of anesthetic effects on inducibility of reentrant VT.12-14

GROUP 3: TRIGGERED ACTIVITY INDUCED BY DELAYED AFTERDEPOLARIZATIONS

Dogs were instrumented as in group 1, but the LAD was not ligated. After 1 week of daily conditioning, triggered activity was induced using ouabain 40 μg/kg through the left atrial catheter, followed by 10 μg/kg every 10 min until VT occurred. Ouabain was then given 10 μg/kg every 30 min to maintain toxic ouabain concentrations.6 Halothane 0.5, 1, and 2% were next administered to these dogs. If sinus rhythm occurred during halothane administration, pacing for 20 beats at increasing rates was used to demonstrate triggered extrasystoles.15,16

GROUP 4: TRIGGERED AUTOMATICITY INDUCED BY EARLY AFTERDEPOLARIZATIONS

Using a protocol analogous to group 3, dogs were given cesium chloride 1 mmol/kg through the left atrial catheter.17 Cesium chloride was then infused at 2 mmol·kg⁻¹·h⁻¹ to initiate and maintain VT, and the effect of halothane 1% on these cesium toxic arrhythmias was determined. Spontaneous CL (RR interval), QT interval, and QT interval corrected for CL by the Bazett formula18 (QTc) were measured in the control state, after administration of cesium chloride, and after inhalation of halothane during continued cesium chloride infusion.

Data were analyzed with the use of analysis of variance (ANOVA) or paired t tests as appropriate.19 Specific tests performed are noted under “Results.” A P < 0.05 was considered significant. All results are reported as mean ± standard error of the mean.

Results

GROUP 1: ABNORMAL AUTOMATICITY

Seven dogs underwent LAD ligation, and five survived. Each survivor demonstrated incessant VT 24 h after in-
Table 2. Suppression of Automatic Ventricular Tachycardia 24 h after Infarction by Halothane (n = 5)

<table>
<thead>
<tr>
<th></th>
<th>Ventricular Beats (%)</th>
<th>Heart Rate (beats per min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>94.7 ± 2.3</td>
<td>152.8 ± 19.1</td>
</tr>
<tr>
<td>Halothane 0.5%</td>
<td>91.9 ± 3.5</td>
<td>154.0 ± 17.9</td>
</tr>
<tr>
<td>Halothane 1.0%</td>
<td>75.5 ± 18.9*</td>
<td>134.0 ± 15.3</td>
</tr>
<tr>
<td>Halothane 2.0%</td>
<td>54.8 ± 15.0*</td>
<td>150.8 ± 7.1</td>
</tr>
</tbody>
</table>

* P < 0.05 versus control by Duncan’s multiple-range test after ANOVA.

Table 3. Effects of Halothane on Programmed Stimulation-induced Extrasystoles 1 week after Myocardial Infarction

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Halothane Concentration (%)</th>
<th>S1–S1</th>
<th>S2 ERP</th>
<th>S3 ERP</th>
<th>S3 Range Yielding Reentrant Beats</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>300</td>
<td>110</td>
<td>240</td>
<td>250–270</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>300</td>
<td>140</td>
<td>270</td>
<td>280</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>300</td>
<td>150</td>
<td>300</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>500</td>
<td>130</td>
<td>260</td>
<td>270–280</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>500</td>
<td>140</td>
<td>270</td>
<td>280–290</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>300</td>
<td>140</td>
<td>260</td>
<td>270–290</td>
</tr>
</tbody>
</table>

Data in milliseconds.

VT = ventricular tachycardia; VF = ventricular fibrillation; S1–S1 = cycle length of train of eight paced ventricular beats; S2 ERP = longest S1–S2 interval after eight-beat VF train failing to capture the ventricle; S3 ERP = longest S2–S3 interval failing to capture the ventricle. S1–S2 fixed at S2 ERP + 20 ms.

GROUP 2: REENTRANT VENTRICULAR TACHYCARDIA

Table 3 describes the effects of halothane on PES-induced ventricular extrasystoles. Halothane “cured” presumably reentrant extrasystoles in three of six dogs. In the control state, PES induced from two to six nonstimulated extrasystoles. In these three dogs testing with S2, S3, or S4 stimulation was unable to induce extrasystoles after inhalation of halothane 1%.

In the remaining three dogs, halothane either had no effect on induced arrhythmias or apparent proarrhythmic effects. In one dog (experiment 4), before halothane was administered, PES reproducibly induced 2 extra beats when, after 8 paced beats at an S1–S1 interval of 500 ms and a premature S2 beat at an S1–S2 interval of 150 ms,

Fig. 1. Effects of halothane on ventricular tachycardia 24 h after coronary artery ligation. A: Control. Only the first, third, and final beats are of sinus origin. Others are ventricular in origin. B: After 2% halothane all beats are of sinus origin. Paper speed: 25 mm/s (1 line = 0.04 s).
an S3 beat was introduced at an S2–S3 coupling interval of either 270 or 280 ms. Halothane 1% increased S2 ERP from 130 to 140 ms in this dog. After repeated PES at an S1–S1 CL of 500 ms and S1–S2 interval of 160 ms, S3 stimuli at CL of either 280 or 290 ms repeatedly induced short runs of nonsustained VT (fig. 2). In a second dog (experiment 5), halothane administration had no effect on the reproducible occurrence of seven to ten nonstimulated extrasystoles. However, administration of halothane increased the range of S2–S3 intervals that resulted in the appearance of presumably reentrant beats by 50%, from 20 to 30 ms.

In experiment 6, a single extrasystimulus (S2) after an 8-beat train of S1 beats at an S1–S1 CL of 300 ms induced sustained monomorphic VT. Halothane in concentrations of up to 2% changed neither the rate nor the morphology of the VT. After discontinuation of halothane, an attempt was made to restore the animal by cardioversion, but the rhythm degenerated into ventricular fibrillation from which the dog could not be resuscitated.

Although the number of dogs studied was small, the effects of halothane administration on S2 and S3 refractory periods were compared between dogs showing an antiarrhythmic effect of halothane and those showing no beneficial effect. The halothane-induced increase in S2 ERP in dogs “improved” by halothane, from 116.7 ± 6.7 to 143.3 ± 3.3 ms (25 ± 3.8%), was significantly greater than that in the remaining dogs, in which S2 ERP increased from 130 ± 0 to 140 ± 0 ms (7.7% increase, \(P = 0.03 \) by unpaired, two-tailed \(t \) test). Two-way repeated-measures ANOVA showed that halothane increased S2 ERP (\(P = 0.025 \)) and that the increase differed between groups (\(P = 0.03 \)).

Changes in S3 ERP, from 243.3 ± 14.5 to 280 ± 10 ms in dogs displaying an antiarrhythmic effect of halothane and from 255 ± 5 to 265 ± 5 ms in dogs not displaying an antiarrhythmic effect, are similar to those for S2 ERP. Halothane increased S3 ERP (\(P = 0.0087 \) by ANOVA), and the increase was greater in “improved” dogs (\(P = 0.03 \), \(t \) test). By analysis of variance, the difference between groups approached but did not achieve significance (\(P = 0.055 \)).

GROUP 3: OUABAIN-INDUCED VENTRICULAR TACHYCARDIA

Ouabain infusion caused VT in each of five dogs, whereas halothane restored sinus rhythm in four of five dogs. Halothane 1% restored sinus rhythm in two dogs, and halothane 2% converted an additional two dogs. The remaining dog demonstrated no sinus beats during ouabain-toxic VT in the absence of halothane, 50% sinus beats after 1% halothane, and 87% sinus beats after 2% halothane.

Table 4 details the effects of increasing halothane concentration on ouabain-toxic VT. Halothane administration decreased heart rate in these dogs (\(P = 0.0002 \) by

FIG. 2. Proarrhythmic effects of halothane on reentrant ventricular tachycardia. A: Control. Following an eight-beat train of paced beats (S1), two premature extrastimuli (S2 and S3) induce two presumably reentrant extrasystoles (E). B: Halothane 1%. After eight S1 beats (seven shown), S2 and S3 extrastimuli reproducibly induced short runs of nonsustained ventricular extrasystoles (E). Paper speed: 25 mm/s; S1–S1 interval: 500 ms.
ANOVA) while increasing both the number of sinus beats per minute ($P = 0.0005$ by ANOVA) and percentage of sinus beats ($P = 0.001$ by ANOVA).

An example demonstrating the effects of halothane on ouabain-induced VT is shown in figure 3. In figure 3A, ventricular beats are interspersed with sinus and fusion beats. Observing ventricular and atrial electrograms from the epicardial electrodes confirmed the ventricular origin of beats. Halothane 1% restored sinus rhythm. It is a characteristic of delayed-afterdepolarization (DAD)-induced VT that rapid pacing often induces extra beats (i.e., triggers extrasystoles). Therefore, 20-beat runs of ventricular pacing were used in an attempt to induce triggering. Pacing at a 400-ms CL did not trigger extrasystoles, but faster pacing at a 250-ms CL triggered a brief run of VT (figs. 3C and 3D).

Group 4: Cesium-Induced Ventricular Tachycardia

Intravascular infusion of cesium produced progressive increases in the QT interval and QTc without significant change in the RR interval (table 5). Characteristically, as QTc increased, episodes of trigeminy first appeared, followed by bigeminy and increasingly complex patterns of ventricular arrhythmias. Inhalation of halothane 1% caused no further change in QT, QTc, or RR intervals (table 5). In none of five dogs did halothane 1% beneficially affect cesium-induced VT. Two dogs also received halothane 2% without change in VT severity. QTc in these two dogs after halothane 2% was 456 ± 7.5 ms, unchanged from values obtained during halothane 1% inhalation. Figure 4 shows cesium-induced VT recorded from 1 of these two dogs and the lack of benefit from halothane 1 or 2%. In figure 4D, torsades de pointes developed and degenerated to ventricular fibrillation.

Discussion

The present investigation examines the effects of halothane on four established canine models of VT: 1) VT occurring 24 h after myocardial infarction, 2) VT occurring 1 week after infarction, 3) VT due to acute ouabain toxicity, and 4) VT induced by infusion of cesium chloride. The present results indicate that halothane can have variable effects on these models of VT, ranging from proarrhythmic to antiarrhythmic. Mechanisms for VT and speculation as to possible halothane effects in each model studied are explored below.

Twenty-Four-Hour-Postinfarction Ventricular Tachycardia

Twenty-four hours after two-stage ligation of the LAD in dogs, the ECG displays incessant ectopic ventricular
TABLE 5. Electrophysiologic Effects of Cesium Chloride Infusion

<table>
<thead>
<tr>
<th></th>
<th>RR Interval</th>
<th>QT Interval*</th>
<th>QT, Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>502 ± 45.9</td>
<td>248 ± 7.4</td>
<td>352 ± 17.4</td>
</tr>
<tr>
<td>CsCl</td>
<td>515 ± 48.1</td>
<td>355 ± 26.2</td>
<td>470 ± 17.8†</td>
</tr>
<tr>
<td>CsCl + Halo 1%</td>
<td>469 ± 66.1</td>
<td>310 ± 22.8</td>
<td>458 ± 13.3†</td>
</tr>
</tbody>
</table>

Data in milliseconds.

* $P = 0.035$ by ANOVA. $P = 0.048$ for control versus CsCl; $P = 0.054$ for control versus CsCl + halo1%.
† $P < 0.015$ versus control.

This arrhythmia is generally believed to be caused by abnormal activity of partially depolarized, slowly conducting subendocardial Purkinje fibers that survived the infarct. The pathophysiology of abnormal automaticity may begin with ischemia-induced intracellular acidosis that inhibits membrane Na⁺-K⁺ pump function and alters sarcolemmal conductance, reducing intracellular K⁺ activity. Reduction of intracellular K⁺ depolarizes membrane potential as predicted by the Nernst equation and activates either inward Ca²⁺ or Na⁺ currents. Abolition of depolarization-induced automaticity by Ca²⁺-channel antagonists emphasizes the important role of Ca²⁺ entry in the genesis of abnormal automaticity. Na⁺ entry through partially inactivated fast Na⁺ channels or the nonselective cationic transient inward current provide sources for Na⁺ generated arrhythmias.

However, triggered activity due to DADs has been observed in similar preparations. Intracellular Ca²⁺ overload can occur after ischemia. When Ca²⁺ storage capability of the sarcoplasmic reticulum is exceeded, an oscillatory transient inward current carried by cations such as Na⁺ and K⁺ is induced. The transient inward current manifests as DADs and triggered-activity--induced arrhythmias. Similar requirements for elevated intracellular Ca²⁺ suggest that oscillatory increases in intracellular Ca²⁺ lead to triggered activity, whereas nonscillatory increases in intracellular Ca²⁺ cause abnormal automaticity in otherwise similar circumstances.

Logic et al., in 1969 noted that halothane suppressed "idioventricular tachycardia" in nine dogs, 24–72 h after two-step ligation of the LAD. Figure 3 of their publication is similar to figure 1 in the present report. Turner et al., with the use of an in vitro model 1 day after LAD ligation, also observed preparations in which halothane suppressed abnormal automaticity, consonant with the present study. However, Turner et al. also described examples of DAD-induced triggered activity, which halothane also abolished.

At the cellular level, halothane blocks the slow inward Ca²⁺ current, abolishes Ca²⁺-dependent action potentials, decreases intracellular Ca²⁺ transients, and inhibits release of Ca²⁺ from sarcoplasmic reticulum. Each of these actions can antagonize either abnormal automaticity or triggered activity.

Nevertheless, evidence suggests that the predominant arrhythmogenic mechanism at 24 h after infarction is abnormal automaticity and not triggered activity. Overdrive suppression of VT in four of the five dogs we studied is typical of automatic foci but not of triggered activity, which is exacerbated by increases in pacing rate. This differing response to pacing in intact animals may differentiate triggered activity from abnormal automaticity, even though automatic arrhythmias occurring in depolarized cardiac fibers are not always overdrive-suppressible. Conversion of 24-h-postinfarction VT to sinus rhythm after moricizine, which is relatively selective for abnormal automaticity, but not doxorubicin, which specifically suppresses triggered activity, also supports the hypothesis that abnormal automaticity is responsible.

Fig. 4. Effects of halothane on cesium-induced ventricular tachycardia. A: Multiform ventricular tachycardia is seen after cesium chloride administration. B: Halothane 1% administration results in conversion to a more uniform morphology of ventricular tachycardia. C: Halothane 2% has little effect except possible acceleration of rate. The changes in ventricular tachycardia morphology and rate seen after halothane administration in this dog were not observed in the other dogs that received cesium. D: During administration of halothane 3%, torsades de pointes developed. This rhythm deteriorated into ventricular fibrillation. Paper speed: 25 mm/s.
for VT occurring 24 h after infarction. The present data suggest that the antiarrhythmic effects of halothane during VT occurring 24 h after infarction reflect inhibition of abnormal automaticity.

ONE-WEEK–POSTINFARCTION VENTRICULAR TACHYCARDIA

Ligation of the LAD in dogs produces a characteristic late (1 week) infarction with a 1–3-mm-thick rim of electrophysiologically abnormal surviving epicardial cells overlying a dense transmural core of infarction.48 Programmed stimulation induces reentrant VT within the surviving epicardial layer50,48 by producing an arc of functional block around which the reentrant wave of activation advances at a slow but uneven speed.21 Termination usually occurs when the leading edge of activation encounters refractory tissue,48 although complete block of conduction in the already slowly conducting tissue can also terminate the arrhythmia.20,45

Turner et al.,47 who studied a 24-h infarction model, were interested primarily in the effects of halothane on reentrant VT. In seven *in vitro* preparations they found that halothane prolonged functional refractoriness, but not absolute refractoriness (ERP), and slowed conduction of premature impulses. The result in five of seven specimens was a widening of the zone of premature extrastimuli that induced reentrant responses. The authors suggested that this represented a proarhythmic effect of halothane.47 One of our dogs, 1 week after infarction, displayed a similar increase in the range of extrastimuli producing reentrant beats.

In studies more similar to the present investigation, using intact dogs studied by programmed stimulation several days to weeks after infarction, halothane demonstrated predominantly antiarrhythmic properties. Halothane prevented induction of VT in association with an increase in ERP12-14 without changing ventricular conduction12,14 or QRS duration.12 Dennis et al.,12 studying an LAD ligation model 1–3 weeks after infarction, found that halothane 2% was antiarrhythmic in 47% of dogs studied, 75% of which had prolongation of ERP. A proarhythmic effect of halothane, defined as the appearance of inducible VT or ventricular fibrillation, was observed in 10% of the dogs studied.12 Hunt and Ross,14 studying a similar LAD ligation model 2–8 weeks after infarction, described an antiarrhythmic effect of halothane 2% in 5 of 10 dogs. Deutsch et al.15 found a 50% antiarrhythmic incidence when halothane was administered to dogs 4–6 days after occlusion–reperfusion infarction. In 2 of 19 anesthetics administered to dogs without inducible VT or ventricular fibrillation, a proarhythmic effect of halothane was observed by Deutsch et al.15

In the present study, 1 week after infarction, halothane appeared antiarrhythmic in three dogs, had no important effects on VT induction or refractory periods in two dogs, and was proarrhythmic in 1 dog. In dogs with an antiarrhythmic effect of halothane, ERP was increased by 23%, consistent with previous work.12-14 Thus, it appears that an antiarrhythmic action of halothane against inducible reentrant VT is dependent on ERP prolongation, and that the inability of halothane to oppose inducible arrhythmias or even to facilitate them (proarrrhythmia) correlates with no or minimal effects on ERP. It is well known that an antiarrhythmic drug effective against reentrant VT may be proarrhythmic and exacerbate reentrant VT.44 Rinkenberger et al.45 have demonstrated that drugs may facilitate initiation of VT by prolonging activation time while minimally increasing refractoriness of the reentrant circuit. These observations agree with our present data and previous findings.

The antiarrhythmic effect of halothane 24 h after infarction contrasts with the more variable effects 1 week or more after infarction. This suggests that the effects of halothane on VT after infarction appear to be quite dependent on the age of the infarction.

OUABAIN-INDUCED VENTRICULAR TACHYCARDIA

DADs are membrane potential oscillations that occur after completion of a preceding action potential.29 They have been produced by toxic doses of cardiac glycosides, catecholamines, or hypercalcemia, and have been observed in infarcted tissue, atrial tissue, canine coronary sinus, and simian mitral valve tissue.29,22 Cranefield and, more recently, Wit and Rosen23 summarized work by a number of investigators and concluded that Purkinje fibers exposed to ouabain develop DADs, the amplitude of which are increased by driving the fiber more rapidly. As a result, increased rate or premature impulses can bring the afterdepolarization to threshold, causing extrasystoles or a burst of triggered impulses.

The mechanism for ouabain-induced DADs involves inhibition of myocardial sodium–potassium adenosine triphosphatase by cardiac glycosides, resulting in an increased intracellular Na⁺ concentration.46 The increased intracellular Na⁺ concentration subsequently enhances Na⁺–Ca²⁺ exchange, elevating intracellular Ca²⁺ concentration as excess Na⁺ ions are extruded.46 As during ischemia,31 the resultant elevation in intracellular Ca²⁺ causes DADs and triggered activity.27,46

Halothane increases the dose of digitalis glycosides required to produce ventricular ectopy or sudden death.5 Reynolds et al.47 in 1970 reported that, on the cellular level, halothane abolished tachyarrhythmias due to ouabain toxicity in isolated canine Purkinje fibers. Gallagher et al.48 demonstrated that the reduction of ouabain-induced triggered arrhythmias may be due to a reduction
in the amplitude of DADs. Whether this relates to block of the channel responsible for DADs (i.e., the transient inward current or reduction in intracellular levels of Ca\(^{2+}\), the activator of the transient inward current, has not been determined.

The present data confirm existing data indicating that halothane opposes digitalis-induced arrhythmias. The present study extends these observations by use of a pacing protocol designed to show that halothane has inhibited ouabain induced triggered activity, evidenced by the ability of rapid trains of pacing to produce brief runs of extrasystoles (fig. 3).

Cesium-induced Ventricular Tachycardia

Prolongation of the QT interval of the surface ECG, whether congenital or acquired, increases risk of malignant ventricular arrhythmias having a polymorphous configuration or torsades de pointes pattern. Administration of cesium chloride prolongs the QT interval and action potential duration by blocking delayed outward K\(^+\) currents and induces complex VT, including torsades de pointes. In intact dogs, Levine et al. recorded monophasic action potentials directly from the endocardial surface during cesium chloride administration. They identified early afterdepolarizations (EADs) that were suppressed by overdrive pacing in each dog. EADs are membrane-potential oscillations distinguished from DADs by their occurrence before full repolarization from the preceding action potential. The appearance of EADs related closely to the onset of ventricular arrhythmias. Thus, cesium chloride may induce VT by producing EADs and triggered automaticity.

The ionic currents responsible for EADs are not known precisely. Sensitivity of EADs to low doses of tetrodotoxin or lidocaine, which block Na\(^+\) currents, suggested that an inward Na\(^+\) current such as the Na\(^+\) window current of the action potential plateau was responsible. However, a recent study demonstrated a role for the L-type Ca\(^{2+}\) channel since EADs could be induced with the Ca\(^{2+}\) current agonist Bay K8644 in voltage-clamped sheep Purkinje fibers. Analysis of current traces identified an inward Ca\(^{2+}\) transient present at voltages where EADs appeared and showed that nitrrendipine, but not tetrodotoxin, abolished the observed current. Clearly, further studies are needed to elucidate the etiology of EADs.

Although halothane blocks the inward Ca\(^{2+}\) current, fast Na\(^+\) current, and the window Na\(^+\) current suggested by various authors to be responsible for EADs, halothane also blocks repolarizing outward K\(^+\) currents and prolongs the QT interval. In the present study, the prolongation of QT interval by cesium and possibly also by halothane may have offset any potentially beneficial effects of halothane on EADs through Na\(^+\)- or Ca\(^{2+}\)-channel blockade.

Limitations

We acknowledge several study limitations that affect interpretation of results. First, hemodynamic measurements were not obtained during this study, to minimize the risk of problems inducing arrhythmias with intracardiac catheters. Since both halothane and ventricular arrhythmias can adversely affect hemodynamics, resulting hemodynamic changes could have influenced the generation of arrhythmias in the present studies. Therefore, it is not absolutely certain that electrophysiologic changes caused by halothane rather than indirect effects of halothane, or hemodynamic changes were most responsible for observations of this study. Second, end tidal or blood concentrations of halothane were not measured, these may not be clinically relevant. Finally, a large body of evidence supports the mechanisms for VT in each model used. However, since we did not perform the required additional electrophysiologic testing to confirm the presumed VT mechanism in each model, one must view the present findings as indirect evidence for an effect of halothane on specific mechanisms for VT.

Significance

With the use of four distinct models of VT, the present data demonstrate that the proarrhythmic or antiarrhythmic effects of halothane vary according to the presumed mechanisms causing VT. Halothane antagonized those mechanisms dependent primarily upon Ca\(^{2+}\) influx, such as abnormal automaticity and DAD triggered activity. In the particular model studied for reentrant extrasystoles, halothane had mixed effects depending on the degree of prolongation of ERP. Finally, halothane had little effect on EAD-dependent triggered automaticity. If clinically applicable, our results suggest that the effects of halothane on a given ventricular arrhythmia will vary depending upon the etiology of the arrhythmia. In humans the majority of ventricular arrhythmias are presumably reentrant in origin. Halothane may be beneficial in reentrant VT but, as all other antiarrhythmic agents studied, can be proarrhythmic. Avoidance of halothane when VT induction during intraoperative mapping of VT or automatic defibrillator implantation, for example, would seem prudent.

References

2. Morrow DH: Anesthesia and digitalis toxicity: IV. Relationship

46. Brody TM, Akera T: The pharmacology of the cardiac glycosides, Physiology and Pathophysiology of the Heart. Edited by Sperelakis N. Boston, Martinus Nijhoff, 1984, pp 405–419

47. Reynolds AK, Chiz JN, Pasquet AF: Halothane and methoxyflurane: A comparison of their effects on cardiac pacemaker fibers. Anesthesiology 33:602–610, 1970

55. Coulombe A, Coraboeuf E, Malecot C, Deroubaix E: Role of the “Na window” current and other ionic currents in triggering early after-depolarizations and resulting re-excitations in Purkinje fibers, Cardiac Electrophysiology and Arrhythmias. Edited by Zipes DP, Jalife J. Orlando, Grune & Stratton, 1985, pp 43–49

