Pulse Oximeter Overload

To the Editor—We describe a case in which a patient's finger pulses were too strong for a Nellcor N-100 pulse oximeter with a Durasense probe.

The patient was a healthy 31-yr-old man undergoing a right carpal-tunnel release. Before induction of anesthesia, the hemoglobin oxygen saturation (SpO_2) was 99% during administration of 100% oxygen by mask. Anesthesia was induced with propofol and maintained with isoflurane and nitrous oxide by mask. The pulse oximeter sensor was located on the patient's index finger, and plausible readings with a strong signal were obtained until 5 min after induction. At this point, the SpO_2 decreased to zero over the course of eight to ten heart beats. Yet the signal remained strong, the pulse-rate reading was accurate, and cyanosis was not present. The patient's blood pressure was 110/70 mmHg, and he had an unusually strong and palpable digital artery pulse. The oximeter sensor worked correctly when applied on the finger of the anesthesiologist. Occlusion of the patient's radial artery returned the SpO_2 to 95% over the course of five to six beats. On release of this occlusion, the SpO_2 reverted to zero.

During the operation, the probe malfunctioned on the thumb, index, and middle fingers, but worked normally on the fifth finger. The zero SpO_2 was improved to 95% repeatedly with occlusion of the radial artery. In the recovery room, the patient's finger pulse was no longer palpable, and an oximeter functioned normally.

When contacted about this incident, the Nellcor company confirmed that when pulsatile flow is strong, the N-100 pulse oximeter is unable to determine the SpO_2 correctly. When the device detects this condition, it displays the pulse rate with an SpO_2 of zero.

In contrast, the Nellcor model N-200 pulse oximeter tolerates a greater pulse signal before becoming overloaded. If overload does occur, the N-200 will go into "pulse search" mode instead of displaying a zero SpO_2 and the pulse rate. This design should be a great improvement. However, to our knowledge, all of the N-100 pulse oximeters currently in use have the same fault that we discovered in ours. If surgical or other problems had occurred simultaneously, our confusion and inability to determine the SpO_2 accurately could have contributed to a critical event.

Neil Armstrong, M.D.
Resident in Anesthesiology

Lee S. Perrin, M.D.
Assistant Professor of Anesthesiology
Tufts University School of Medicine
Department of Anesthesiology
St. Elizabeth's Hospital of Boston
736 Cambridge Street
Boston, Massachusetts 02135

(Accepted for publication September 10, 1991.)

In Reply—Armstrong and Perrin are correct in noting that the N-100 pulse oximeter can, in the very unusual condition of very large pulses, become overloaded and display a zero value for saturation. If the N-100 oximeter is presented with abnormally large optical pulses, the integer mathematical computation within it can "overflow" (i.e., exceed the allowed integer range of the microprocessor), resulting in a computed (and displayed) hemoglobin oxygen saturation of 0%. The size of the optical pulse required to overflow the computation approaches a value of 20% pulse modulation (i.e., 20 parts per 100). This is not just a large signal; it is a gigantic signal, rarely seen outside of the laboratory. By way of comparison, the normal upper limit of very large pulses is approximately 10–12%, whereas the usual pulse modulation is only 1–4%. The occurrence of the pulse overflow noted by the authors is a very rare event, indeed, but it can occur in extreme circumstances.

When the above overflow occurs, the N-100 actively indicates the error condition by the display of a zero value for saturation, an event that brings the error condition to the attention of the operator immediately. No silent failure occurs. As the authors note, the heart rate is displayed accurately, even though the saturation display is "zeroed out.

In later models of the pulse oximeter, such as the N-200 pulse oximeter and the N-1000 Multifunction Monitor, we changed the design of the error notification to result in a pulse search alarm instead of a zeroed display because we believed that the use of the pulse search alarm for the overflow case was less ambiguous.

David B. Swedlow, M.D.
Vice President of Medical Affairs
Nellcor Incorporated
25495 Whitesell Street
Hayward, California 94545

(Accepted for publication September 30, 1991.)

A Method for Ensuring Proper Function of Multiorifice Catheters

To the Editor—Recently, Bergman and Jiminez1 described difficult pulmonary artery catheterization attributable to mislabeling of the proximal and distal orifices. A modification of a previously described maneuver2 would have prevented their problem.

Before the catheter is inserted and after patency of the various channels is checked, pressing a finger lightly over the distal port will cause a distinct rise in the tracing monitoring the distal lumen. This maneuver ensures correct labeling of the port as well as the function of the distal orifice.
Prediction of Myocardial Oxygen Consumption

To the Editor—Hoefi and colleagues are to be complimented on a fine study in which they determined the appropriate human coefficients for the pressure–work index (PWI). Their study confirms the benefit of cardiac output in the estimation of myocardial oxygen consumption (MV\textsubscript{O}\textsubscript{2}). It is curious that stroke volume remains largely ignored despite numerous studies demonstrating its utility.

Regret analysis on the pooled data of many subjects as used by Hoefi et al. may underestimate the relative value of the external work term in the PWI because the best-fit values for the pressure–rate term and the external work term are influenced by the intersubject variability. The coefficients for the PWI were originally defined as the average values obtained from regression analysis performed separately on each animal. When a pooled data analysis was performed on the same data, the coefficient for the external work term decreased from 3.25 \times 10-4 to 2.40 \times 10-4, and the coefficient for the systemic pressure–rate term increased from 4.08 \times 10-4 to 4.64 \times 10-4. The overall correlation coefficient was 0.870, better than the published value of 0.867 for the PWI. The choice between the two methods depends on whether one wishes to know the actual value of MV\textsubscript{O}\textsubscript{2} or if one is more concerned with the percentage change of MV\textsubscript{O}\textsubscript{2} within a subject. If one desires the actual value, then the pooled regression method used by Hoefi et al. may be used. If percent change in MV\textsubscript{O}\textsubscript{2} is important, then average coefficients from separate regressions on individuals will probably be superior.

Lastly, if cardiac index is expressed in liters per squared meter, should not the coefficient for the external work term in PWI modified for clinical use (PWI\textsubscript{mod}) be 8.0 \times 10-3, not 8.0 \times 10-4? Otherwise, the MV\textsubscript{O}\textsubscript{2} associated with the external work term will be negligibly small and make PWI\textsubscript{mod} no different than the systolic pressure–rate product.

G. ALEC ROOKE, M.D., PH.D.
Assistant Professor
Department of Anesthesiology
University of Washington, RN-10
Seattle, Washington 98195

REFERENCES