Effects of Halothane and Isoflurane on Calcium and Potassium Channel Currents in Canine Coronary Arterial Cells

Nediljka Builubasic, M.D.,* Nancy J. Rusch, Ph.D.,† Jure Marijic, M.D.,*, John P. Kampine, M.D., Ph.D.,‡ Zeljko J. Bosnjak, Ph.D.§

The effects of halothane (0.75% and 1.5%) and isoflurane (2.6%) on macroscopic Ca²⁺ and K⁺ channel currents (Iₖ and Iₚ, respectively) were investigated in voltage-clamped vascular muscle cells from the canine coronary artery. Single coronary arterial cells were dialyzed with K⁺ glutamate solution and superfused with Tyrode's solution for measurement of Iₚ (n = 45). Stepwise depolarization from a holding potential of −60 mV to beyond −30 mV elicited an outward, slowly inactivating Iₚ that had a macroscopic slope conductance of 18 nS. Iₚ was reduced 75% by 10 mM 4-aminopyridine, a K⁺ channel antagonist. Compared to 4-aminopyridine, halothane at 0.75% and 1.5% reduced peak Iₚ amplitude only by 14 ± 2% and 36 ± 3%, respectively. At approximately equianesthetic concentrations, 2.5% isoflurane suppressed Iₚ less than did 1.5% halothane, reducing peak amplitude by 15 ± 3%. In other sets of experiments, cells were dialyzed with 120 Ca⁴⁺-glutamate solution and superfused with 10 mM BaCl₂ or CaCl₂ solutions to isolate Iₚ (n = 30) pharmacologically. Under these conditions, progressive depolarizing steps from −60 mV elicited a small inward current, which was potentiated 3.4-fold by equimolar substitution of Ba⁴⁺ for Ca⁴⁺ in the external solution and was blocked by 1 μM nifedipine. This inward current, which resembled L-type Iₚ, was blocked 37 ± 4% and 70 ± 4% in the presence of 0.75% and 1.5% halothane, respectively. Isoflurane (2.6%) also decreased Iₚ by 55 ± 5%. It appears that while halothane and isoflurane suppress both Iₚ and Iₚ, these anesthetics preferentially reduce Iₚ. Also, at equianesthetic concentrations, halothane (1.5%) appears more potent than isoflurane (2.6%) in suppressing ionic currents in the coronary arterial cells. The significantly greater suppression of Iₚ is due to 1.5% halothane than 2.6% isoflurane may contribute to the more predominant halothane-induced coronary dilation by halothane. Thus, in the coronary artery, which relies on Ca²⁺ entry for vascular muscle activation, the reduced Ca²⁺ influx may represent one of the mechanisms by which volatile anesthetics induce vasodilation. (Key words: Anesthetics, volatile: halothane; isoflurane. Animal: dog. Artery: coronary. Current: calcium; potassium. Muscle: Vascular smooth.)

The effects of halothane and isoflurane on vascular muscle have been examined in a number of studies. The general conclusion is that these anesthetics cause vasodilation in specific vascular beds either by a direct depressant action on vascular smooth muscle or by an indirect attenuation of vasoconstrictor activity. Although it is frequently contended that isoflurane is a more potent coronary vasodilator than halothane in the isolated perfused heart, isoflurane was a less potent dilator of isolated coronary arterial segments. This suggests that in the intact system the direct effect of volatile anesthetics on coronary arterial muscle likely interact with other mechanisms to determine the final level of vascular activation.

In support of this, the mechanisms of volatile anesthetic-induced changes in the vasculature appear to be diverse. Volatile anesthetics reportedly alter sympathetic neurotransmission, thus changing the central vasoconstricting influence on the vasculature. At the vascular neuromuscular junction, receptor-mediated contractile responses are reportedly suppressed. The known effects of halothane on sarcoplasmic reticulum include increasing Ca²⁺ release and decreasing Ca²⁺ accumulation, possibly by inhibiting Ca²⁺ ATPase activity, as has been shown in isolated cardiac sarcoplasmic reticulum. Halothane also may directly decrease Ca²⁺ activation of the contractile proteins and increase intracellular levels of cAMP and cGMP. Involvement of the endothelium in volatile anesthetic-induced changes in the vasculature is controversial at present.

Despite the available literature, the actions of volatile anesthetics on the electrical properties of vascular muscle are largely unknown. Ionic transsarcolemmal fluxes, a potentially very important site of anesthetic action, have not been intensively studied in vascular smooth muscle. It appears, however, that the dilation induced by halothane of vital vascular beds, such as the cerebral circulation, involves a direct action of halothane on the vascular muscle membrane. In isolated cerebral arteries, relaxation by halothane is associated with concentration-dependent membrane depolarization. The mechanism by which halothane induces this apparent electromechanical uncoupling, i.e., causes membrane depolarization concurrent with vasodilation of vascular muscle cells, is not known.

It was shown recently that halothane and isoflurane suppress membrane Ca²⁺ and K⁺ channel currents in cardiac myocytes. However, no reports are available on the effects of inhalational anesthetics on the above currents in vascular muscle cells. Thus, the purpose of this
study was to use the voltage-clamp method to directly measure the effects of halothane and isoflurane on K⁺ and Ca²⁺ channel currents (I_K and I_Ca, respectively) in canine coronary arterial cells. Our results show that halothane and isoflurane decrease the amplitudes of both I_K and I_Ca, but preferentially suppress I_Ca amplitude. Halothane was a more potent depressor of these currents than was isoflurane. Because K⁺ channel block would favor membrane depolarization, whereas I_Ca suppression would induce vascular dilation, these anesthetic-induced effects on the vascular muscle membrane may help to explain the electromechanical uncoupling of vascular smooth muscle by inhalational anesthetic agents. The preferential depression by halothane and isoflurane of I_Ca amplitude also may contribute to coronary dilatation.

Materials and Methods

Preparation of Single Vascular Muscle Cells

After the approval by the Institutional Animal Care Committee, adult mongrel dogs weighing 15–25 kg were placed in a Plexiglas box and anesthetized with halothane. After attainment of surgical anesthesia, the trachea was intubated and the lungs were ventilated with 1.5% halothane in oxygen. The chest was opened, and the hearts were excised rapidly and placed in cold oxygenated Krebs' solution. The left anterior descending and/or left circumflex coronary arteries were dissected free from the epicardial surface and placed in a chamber containing Krebs' solution. Any remaining blood was cleared from the arteries, excess fat and adventitia removed, and the arteries cut into 2-mm rings. These were placed immediately in an enzyme solution containing (in millimolar concentration): NaCl 136, KCl 6, MgCl₂ 1, HEPES 10, CaCl₂ 0.5, glucose 10, collagenase CLS II 500 U/ml (Worthington Co., Freehold, NJ), dithiothreitol 4 mM (Sigma Chemical Co., St. Louis, MO), and papain 2 U/ml (Worthington Co.).

The vascular rings were placed in a vial containing the enzyme solution, maintained at 37°C in a water bath, and stirred at 5 rpm by a microstirrer (Micro-Stirr, Wheaton Instruments, Millville, NJ). After 1–2 h, the vascular pieces were disrupted mechanically by forcing them repeatedly through a Pasteur’s pipette. The cell suspension was pelleted by centrifugation at 120 × g for 8 min. The pellet was resuspended in enzyme-free solution and placed on ice. Experiments were initiated immediately.

Voltage-clamp Recording

A drop of dispersed single coronary arterial cells was placed in a perfusion chamber (22°C) on the stage of an inverted microscope (Olympus IMT-2, Leeds Instruments, Minneapolis, MN) equipped with modulation contrast. At 500X magnification, a hydraulic micromanipulator (Narishige, Tokyo, Japan) was used to position heat-polished borosilicate patch pipettes with tip resistances of 4–6 MΩ on the membrane of arterial cells. High resistance seals (5–30 GΩ) were formed, after which the pipette patch was removed by negative pressure to obtain the electrical access to the whole cell as previously described. Whole-cell currents were elicited by 200-ms depolarizing pulses generated by a computerized system (Pclamp software, Axon Instruments, Burlingame, CA) every 5–10 s. The currents were amplified by a List EPC-7 patch-clamp amplifier (Adams & List Assoc., Great Neck, NY), and the amplifier output was low-pass-filtered at 500 Hz. All data were digitized (sampling rate 10,000 per second) and stored on a hard disk to permit analysis at a later time. Leak and capacitative currents were subtracted from each record by linearly summing scaled currents obtained during 10-mV hyperpolarizing pulses.

Recording Solutions

The external solution used for the measurement of I_K contained (in millimolar concentration): CaCl₂ 2, NaCl 135, KCl 4.7, MgCl₂ 1, glucose 10, and HEPES 5 (pH = 7.4). The pipette solution contained (in millimolar concentration): K-glutamate 130, MgCl₂ 1, EGTA 1, HEPES 10, and Na₂ATP 3 (pH = 7.1–7.2). The external solution used for I_Ca measurement consisted of (in millimolar concentration): CaCl₂ or BaCl₂ 10, tetraethyammonium chloride 155, MgCl₂ 1, glucose 10, and HEPES 10 (pH = 7.4). In the pipette solution, Cs⁺ was substituted for K⁺ to eliminate I_K and permit isolated measurement of I_Ca.

Drug Effects

Repetitive current–voltage curves were obtained in control solutions to monitor time-dependent changes in I_K. After steady-state current amplitude was established by repetitive measurements, cells were exposed to 1 MAC (0.75%) of halothane, 2 MAC (1.5%) of halothane, or 2 MAC (2.6%) of isoflurane by changing the inflow perfusate to one containing anesthetic. Measurements using other drugs were performed similarly. Effects of halothane and isoflurane were complete within 2 min and were reversible during I_K measurements. This was verified by obtaining similar measurements following removal of anesthetic from the perfusate. Contrary to the effects on I_K, anesthetic-induced changes of I_Ca were longer-lasting. Thus, after two control measurements of I_Ca amplitude, a third measurement was obtained after a 3-min exposure to halothane or isoflurane. Parallel time control measurements were taken over the same time period in the absence of anesthetics. Halothane was solubilized at final bath concentrations of 0.4 ± 0.01 mM and 0.8 ± 0.01
mm, which were calculated to correspond to 0.75% and 1.5% halothane, respectively. The isoflurane concentration of 1.0 ± 0.02 mM was calculated to correspond to 2.6%. Solution was sampled from the perfusion chamber and analyzed by gas chromatography to verify the anesthetic concentration at the cell proximity.

Nifedipine (Sigma, St. Louis, MO) was dissolved in 70% ethanol to make a 1 mM stock solution. The final concentration of solvent in the recording solution was 0.07% and by itself did not have any effect of the current. 4-Aminopyridine (4-AP, Sigma, St. Louis, MO) was dissolved directly in the recording solutions.

Statistical Analysis

All currents are expressed as mean ± SEM and were analyzed by two-way analysis of variance. If the F test showed significance, Fisher’s test for least significant difference was performed, with the level of significance at \(P \leq 0.05 \).

Results

Potassium Current

Cells dialyzed with high K+ solution showed large outward currents during 200-ms depolarizing steps from a holding potential of −60 mV to potentials beyond −30 mV (fig. 1A). Activation of peak outward current was linear between −20 and +40 mV, with an average macroscopic slope conductance of 18 nS (fig. 1B). This current was eliminated when Cs+ was substituted for K+ in the pipette solution, indicating that K+ was the mandatory charge carrier for this current. During 200-ms depolarizing pulses from −60 mV to consecutively less negative voltages, the amplitude of outward K+ current was largely sustained over time. This is illustrated by comparing the current–voltage relationship for peak \(I_K \), with \(I_K \) amplitude measured at the end of the 200-ms depolarizing pulse (fig. 1B). At any given voltage, the mean peak and remaining \(I_K \) values were the same, suggesting that \(I_K \) inactivation over the 200-ms pulse period was insignificant. For example, peak \(I_K \) elicited by depolarization to +40 mV from a holding potential of −60 mV averaged 1169 ± 202 pA, of which 1058 ± 196 pA (91%) remained at the end of a 200-ms pulse. Outward current never showed the transient, rapidly inactivating component that has been seen in other smooth muscle preparations. Instead, when the duration of the depolarizing pulse was increased to 5 s to discern the time course of \(I_K \) decay, only a single slow-decay phase was observed (fig. 1C).

4-AP was a potent antagonist of the voltage-dependent \(I_K \). Concentrations of 0.1, 1, and 10 mM 4-AP caused dose-dependent depression of macroscopic \(I_K \), as illustrated on a coronary arterial cell (fig. 2A). Figure 2B illustrates the average effect of 4-AP on the current–voltage relationship for K+ channel activation in six cells. In a dose-dependent manner, 4-AP reduced \(I_K \) amplitude elicited by 10-mV steps from −60 mV to +40 mV. Peak \(I_K \) elicited by a voltage step to +40 mV was reduced to

![Fig. 1. Voltage and time-dependent activation and decay of outward K⁺ current \(I_K \) in a single cell (A). The cell was depolarized in 10-mV increments from holding potential of −60 mV to voltages of up to +40 mV. In this cell, \(I_K \) was activated at command potentials positive to −30 mV. The current–voltage plot of \(I_K \) in coronary smooth muscle cells compares peak \(I_K \) and \(I_K \) remaining at 200 ms against command potential in 5 cells (B). Time-dependent decay in \(I_K \) in a single cell depolarized to different command potentials for 5 s is also shown (C).](http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931331/ on 11/20/2018)
HALOTHANE, ISOFLURANE AND VASCULAR MEMBRANE CURRENTS

FIG. 2. In a dose-dependent manner, increasing concentrations of 4-aminopyridine (4-AP) (0.1, 1, and 10 mM) decreased outward K⁺ current (Iₖ) elicited by depolarizing pulses from a holding potential of −60 to +40 mV in one cell (A). The control current–voltage relationship (n = 6) for activation of Iₖ (expressed as fraction of control maximal Iₖ obtained by depolarization to +40 mV) was reduced in a dose-dependent manner by 0.1, 1, and 10 mM 4-AP throughout the entire voltage range studied (B). Standard error bars are less than symbol size for some measurements. *P ≤ 0.05 versus control.

78 ± 6%, 49 ± 5%, and 25 ± 6% of control amplitude by 0.1, 1, and 10 mM 4-AP, respectively.

The effects of halothane and isoflurane on whole-cell Iₖ were determined by applying a series of stepwise (10 mV) depolarizing test pulses from a holding potential of −60 mV to positive potentials as high as +40 mV. Figure 3 shows actual traces of patch-clamp recordings illustrating the depressant effect of 0.75% and 1.5% halothane and 2.6% isoflurane on Iₖ amplitude. Halothane caused a reversible, dose-dependent reduction in Iₖ at all voltages. Isoflurane similarly induced a reversible suppression of Iₖ. Peak Iₖ was plotted as a function of membrane potential to analyze the mean effect of 0.75% and 1.5% halothane (figs. 4A and 4B, respectively) and 2.6% isoflurane (fig. 4C) on Iₖ amplitude. Halothane at concentrations of 0.75% and 1.5% depressed peak Iₖ amplitude obtained at +40 mV by 14.4 ± 2% and 36.4 ± 3%, respectively (n = 7). Isoflurane (2.6%) reduced Iₖ amplitude by 15 ± 3% (n = 8). At approximately equianesthetic concentrations, Iₖ suppression by 1.5% halothane was significantly greater than by 2.6% isoflurane at voltages positive to +10 mV.

CALCIUM CURRENT

Whole-cell I_Ca was pharmacologically isolated for measurement by substituting Cs⁺ for K⁺ in the pipette solution and tetraethylammonium chloride for Na⁺ and K⁺ in the external solution, as described previously.28 I_Ca was generated by stepwise depolarizing pulses (10 mV; 200 ms) from a holding potential of −60 mV to command potentials as high as +40 mV. The concentration of extracellular Ca²⁺ was increased from 2 to 10 mM to enhance I_Ca amplitude and facilitate the accurate measurement of otherwise relatively small inward current. Furthermore, substitution of 10 mM barium (Ba²⁺) for 10 mM Ca²⁺ in the external solution increased peak I_Ca at +40 mV by 3.4 ± 0.6-fold, as shown in an example (fig. 5A). All further experiments were done with 10 mM Ba²⁺ in the external solution. In 33 cells, threshold activation occurred

FIG. 3. Actual recordings showing the effect in different cells of 0.75% halothane (top), 1.5% halothane (middle), and 2.6% isoflurane (bottom) on K⁺ current elicited by progressive 10-mV test pulses from −60 mV to +40 mV. Recordings were obtained before (control 1), during (anesthetic), and after (control 2) exposure to volatile anesthetics. Both anesthetics produced significant depression of K⁺ current, which was completely reversible on washout (control 2). Effects of halothane were dose-dependent.

+40 mV
-60 mV
CONTROL 1
ANESTHETIC
CONTROL 2

0.75% HAL
1.5% HAL

500 pA
50 ms
2.6% ISO
at −10 mV, and the maximal activation was reached at +20 mV (fig. 5B). Maximal I_{Ca} varied greatly between cells (range 15–170 pA) and averaged 106 ± 20 pA.

The effect of nifedidine on I_{Ca} was measured using the same pulse protocol to further characterize the channel pathway for inward current. As illustrated in the recording in figure 5C, addition of 1 μM nifedidine to bath solution containing 10 mM Ba$^{2+}$ reduced I_{Ca} to 12 ± 1% of original amplitude (n = 5). Both Ba$^{2+}$ and nifedidine are more selective for the long-lasting (L-type) Ca$^{2+}$ channel, the former being a preferential charge carrier and the latter a specific blocker of this channel.²⁴

Figure 6 shows four examples of three consecutive recordings, 3 min apart, of I_{Ca} elicited from a holding potential of −60 mV. Traces at the top show three sequential control recordings in the absence of anesthetic agents. Two initial control recordings (controls 1 and 2) at 3-min intervals preceded subsequent administration of 0.75% and 1.5% halothane, respectively (figs. 6B and 6C). Figure 6D shows the effect of 2.6% isoflurane on I_{Ca} elicited by the same pulse protocol. Halothane (0.75% and 1.5%) depressed I_{Ca} in a dose-dependent manner throughout the voltage range studied, and isoflurane had a qualitatively similar action. The effects of halothane, and to a lesser degree isoflurane, on I_{Ca} were long-lasting, and I_{Ca} amplitudes did not recover even after 15 min. Because of the slow recovery of I_{Ca} after exposure to volatile anesthetics, a series of control measurements were taken in a separate group of cells during the same time period to quantify time-dependent changes in I_{Ca}. As shown by the single recording in figure 6A, and for mean values in figure 7A, the current–voltage relationship for the activation of I_{Ca} was the same for three consecutive controls (control 1 = 107 ± 32 pA, control 2 = 113 ± 37 pA, and control 3 = 101 ± 29 pA; n = 8). However, figures 7B and 7C show that 0.75% halothane decreased I_{Ca} by 37 ± 4% from a control peak current of 100 ± 24 pA (n = 8), whereas 1.5% halothane produced 70 ± 4% reduction from a control peak current of 153 ± 27 pA (n = 7). Isoflurane (2.6%) also produced 55 ± 5% depression of I_{Ca} amplitude from the control peak current of 105 ± 14 pA. At approximately equianesthetic concentrations, I_{Ca} suppression by 1.5% halothane was significantly greater than by 2.6% isoflurane at voltages positive to +10 mV. The effects of volatile anesthetics were not voltage-dependent; i.e., there was no shift in the current–voltage relationship.

Discussion

Halothane and isoflurane have direct coronary vasodilatory effects in vitro and in vivo.²⁵,²⁶ In in vitro preparations, halothane directly relaxes isolated coronary arterial rings previously constricted with K$^+$ or prostanoik to a greater degree than does isoflurane.⁷ This would suggest that halothane is a more potent suppressor than isoflurane of Ca$^{2+}$-dependent contractions.²⁷ In the in vivo setting, the mechanism for coronary flow increase during anesthesia likely involves complex interactions among endothelium, vascular smooth muscle, myocardium, and the autonomic nervous system.
HALOTHANE, ISOFLURANE AND VASCULAR MEMBRANE CURRENTS

The halethane-induced vasorelaxation, as examined in intact rat aortic rings, is likely induced by a combination of events including decreased Ca2+ accumulation by the sarcoplasmic reticulum, decreased sensitivity of contractile proteins to Ca2+,10 and/or decreased Ca2+ entry from extracellular space, as shown in the present study. In addition to these events, there is evidence that anesthetic agents directly alter other ionic fluxes at the vascular muscle membrane.17 Halethane is more potent than isoflurane in reducing the amount of Ca2+ rapidly released from the sarcoplasmic reticulum in rat ventricular myocardium.39 In cerebral arterial muscle, halothane caused depolarization despite simultaneous vascular relaxation, suggesting electromechanical uncoupling of membrane potential and vascular contraction.17 This unusual action of halothane remains unexplained, but the authors suggested that an intracellular action of halothane or alteration of membrane ionic fluxes might be involved.

The purpose of the present study was to identify the actions of halothane and isoflurane on macroscopic I\textsubscript{K} and I\textsubscript{Ca} currents in the coronary arterial cell membrane. Our findings show that these volatile anesthetics reduce the amplitude of I\textsubscript{K} and I\textsubscript{Ca} in the vascular muscle membrane. However, these two channel types were not equally sensitive to block by halothane and isoflurane: I\textsubscript{Ca} was blocked more effectively than I\textsubscript{K}. These findings concur with previous voltage-clamp experiments performed in cardiac myocytes,18,19,30 where halothane and isoflurane produced similar depression of L-type and transient (T-type) I\textsubscript{Ca}.30 but less depression of delayed rectifier I\textsubscript{K}.19 Halothane was a more potent depressor of I\textsubscript{K} and I\textsubscript{Ca} than was isoflurane. These depressant effects of halothane and isoflurane on I\textsubscript{Ca} persisted after terminating the anesthetics. This may explain the irreversible depressant effect of halothane on vascular contraction in isolated rat aortic rings, both in vivo and in vitro.51 Because volatile anesthetics have widespread effects on Ca2+ translocation,8 the mechanism for this effect is not readily apparent.

The macroscopic I\textsubscript{K} measured in our study was 4-AP sensitive, and slowly inactivating. A 4-AP-sensitive, delayed-rectifier K+ channel also has been described in neuronal,32 cardiac,33 skeletal,34 and vascular smooth muscle cells35 and recently in coronary arterial cells.36 In our study, I\textsubscript{K} showed a whole-cell conductance slope of 18 nS. This represents a relatively high K+ conductance, compared with estimated slope conductance of 6 nS in cerebral arterial cells37 and 7 nS in rabbit portal vein.58 This efflux of K+ through these channels functions as an endogenous dilating mechanism and may play an important role in regulating coronary arterial tone.56 Activation of membrane I\textsubscript{K} causes cell hyperpolarization, rendering Ca2+ channels inactive and leading to vascular relaxation.39 It

system. For example, in the intact circulation the direct effects of volatile anesthetics on arterial muscle27,28,28 are superimposed on their dominant depressant action on the myocardium, namely a reduced cardiac work and oxygen demand.28 In addition to these complex interactions, the effects of anesthetic agents on the coronary endothelium may regulate arterial diameter by modulating the synthesis and release of constricting and relaxing factors.14,15 Muldoon and co-workers found that halothane attenuates endothelium-induced vasodilation in dog coronary arteries.16

Fig. 5. Recordings of inward current in three arterial cells. A: The potentiating effect of 10 mM Ba2+ substitution for 10 mM Ca2+ on peak Ca2+ current (I\textsubscript{Ca}) elicited by a depolarizing pulse from −60 mV to +20 mV in an individual cell. B: Traces showing small inward current, voltage, and time-dependent inactivation of I\textsubscript{Ca} in a single cell superfused with 10 mM Ba2+. The cell was depolarized in 10-mV increments from holding potential of −60 mV to voltages of up to +40 mV. In this cell, I\textsubscript{Ca} was activated at command potentials positive to −20 mV. C: Effect of 1 μM nifedipine (NIF) on peak I\textsubscript{Ca} elicited by a depolarizing pulse from −60 mV to +20 mV. Peak I\textsubscript{Ca} was almost completely blocked by 1 μM nifedipine.
is estimated that the opening of only a few K⁺ channels can significantly hyperpolarize a vascular muscle cell. Moreover, opening of a single K⁺ channel could, by some calculations, hyperpolarize arterial cells from -55 to -56.2 mV.

Two distinct Ca²⁺ channel types have been identified in vascular smooth muscle.

![Figure 6](http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931331/)

Fig. 6. Recordings of Ca²⁺ current (I_{Ca}) generated by progressive depolarizing pulses from -60 mV to +40 mV (10-mV increments). Only selected episodes are shown: -60 mV (dashed line) and 0, +10, and +20 mV. **A:** Three measurements (control 1, control 2, and control 3) were taken 5 min apart without exposure to volatile anesthetics in order to determine time-dependent changes (decay) in I_{Ca}. **B:** In other cells, recordings of I_{Ca} were obtained in control solution (control 1, control 2) and then in the presence of 0.75% halothane, 1.5% halothane (O), or 2.6% isoflurane (D). Control measurements were taken 3 min apart, and measurements after anesthetic application were taken 3 min after control 2 in the same cell.

![Figure 7](http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931331/)

Fig. 7. The current–voltage relationships for Ca²⁺ current (I_{Ca}) activation. **A:** Stable current-voltage relationship for I_{Ca} activation in three consecutive trials was confirmed in eight cells. **B:** The current–voltage relationship for I_{Ca} activation in control solution and in the presence of 0.75% halothane (n = 8) or (C) 1.5% halothane (n = 7). **D:** The effect of 2.6% isoflurane (n = 6) on I_{Ca} at all voltages. Both halothane and isoflurane produced significant depression of I_{Ca}. *P ≤ 0.05 versus control 1 and control 2.
in this preparation resembled the L-type ICa. The high threshold for ICa activation, enhancement of ICa amplitude by equimolar substitution of Ba2+ for Ca2+, and block by nifedipine are consistent with the voltage-dependent and pharmacologic properties of the L-type Ca2+ channel in vascular muscle.34,41 The predominance of L-type channels in the coronary circulation has been suggested recently by a study in rabbit coronary arterial cells.42

The halothane and isoflurane-induced block of ICa may help to explain the direct dilatory effect of these anesthetics on vascular smooth muscle. The halothane-induced vasorelaxation is likely induced by a combination of events, including reduction of sensitivity of contractile proteins for Ca2+10 and reduction of Ca2+ influx. The depression of ICa by halothane and isoflurane may be particularly important in the coronary circulation, which relies predominantly on influx of external Ca2+ for maintenance of contraction.43 Concomitantly to this depression of ICa, the volatile anesthetic-induced depression of IK would favor membrane depolarization, because voltage-dependent IK is crucial for membrane repolarization and control of arterial tone. While this membrane depolarization would favor increased Ca2+ influx, the simultaneous and direct depressant action of anesthetics on Ca2+ channels may reduce net voltage-dependent Ca2+ entry.

From our voltage-clamp data, it is not possible to speculate on the molecular basis of the more potent block by halothane and isoflurane of Ca2+ as compared to IK. The depressant effect of volatile anesthetics on whole-cell IK and ICa were voltage-independent in this study, suggesting that halothane and isoflurane also likely reduce ionic currents at resting membrane potential in vascular muscle. Measurement of these events by the single-channel, patch-clamp method may provide more detailed information on the exact mechanism by which volatile anesthetics alter channel activity at more physiologic voltages, where net ionic flux is low. However, to judge from our data on macroscopic ionic currents, it is possible that the preferential depression of ICa by halothane and isoflurane may be one mechanism to reduce cytosolic Ca2+ levels in arterial cells during general anesthesia. In the intact coronary circulation, this membrane alteration may interact with the other actions of anesthetic agents to determine coronary arterial tone and modulate blood flow to the heart.

References

24. Bean BP, Sturek M, Puga A, Hermsmeyer K: Calcium channels