Electrophysiologic and Arrhythmogenic Effects of Bupivacaine

A Study with High-resolution Ventricular Epicardial Mapping in Rabbit Hearts

Jean E. de La Coussaye, M.D., M.Sc.,* Josep Bruçada, M.D., Ph.D.,† Maurits A. Allessie, M.D., Ph.D.‡

It has been shown that administration of toxic doses of bupivacaine may induce ventricular dysrythmias. However, the mechanism of these dysrythmias is still unknown. The present study was designed to test the hypothesis that bupivacaine facilitates the occurrence of reentrant ventricular dysrythmias. High-resolution ventricular epicardial mapping was used to study the effects of 0.2, 0.5, 1.0, and 5.0 μg/ml bupivacaine in 11 Langendorff-perfused rabbit hearts. Five hearts were kept intact (intact heart). In six other hearts, a thin layer of epicardium was obtained by an endocardial cryotechnique (frozen heart). Bupivacaine induced ventricular dysrythmias in 3 of 5 intact hearts at 5.0 μg/ml. In 3 of 6 frozen hearts, 0.2 μg/ml bupivacaine facilitated the induction of ventricular tachycardia by programmed electrical stimulation. Epicardial mapping showed that all tachycardias were based on reentry of the impulse around an arc of functional conduction block. Moreover, bupivacaine significantly prolonged the ventricular effective refractory period and slowed longitudinal and transverse conduction velocity in a dose- and use-dependent manner. It is concluded that bupivacaine facilitates induction of reentrant ventricular dysrythmias in isolated rabbit heart. (Key words: Anesthetics, local; bupivacaine; cardiotoxicity. Heart: electrophysiology; reentry; ventricular dysrythmias; ventricular mapping.)

LARGE DOSES OF BUPIVACAINE are known to induce cardiovascular collapse and/or ventricular dysrythmias.1,2 It is well established in isolated preparations that bupivacaine decreases the fast inward sodium current and therefore the maximum upstroke velocity (Vmax) of ventricular and Purkinje action potentials.3–5 Because ventricular conduction velocity is correlated with the Vmax,6 it is postulated that bupivacaine is responsible for the slowing of ventricular conduction velocities.6 Moller and Covino7 demonstrated in rabbits that bupivacaine decreases Vmax depolarizes the maximum diastolic potential in Purkinje fibers, and induces block of conduction between Purkinje fibers and ventricular muscle. These authors5 and others3,4,7 postulated that bupivacaine can induce ventricular dysrythmias by reentry. However, no direct evidence of ventricular reentry has yet been provided. Conversely, two reports8,9 and more recently a report by Bernards and Artru10 suggested that bupivacaine-induced ventricular dysrythmias were at least partially mediated by the autonomic nervous system.

The aims of this study were 1) to investigate the electrophysiologic effects of bupivacaine, 2) to evaluate whether bupivacaine facilitates the occurrence of ventricular dysrythmias in isolated hearts, and 3) to reveal the mechanisms of bupivacaine-induced ventricular dysrythmias by using high-resolution epicardial mapping in rabbit hearts.

Materials and Methods

HEART PREPARATION

The experimental protocol followed the guiding principles of the American Physiological Society and was approved by the Animal Study Committee of the University of Limburg. Eleven Flemish rabbits weighing between 3.25 and 3.8 kg were used in this study. After anticoagulation with heparin (1,000 IU), the animals were killed by cervical dislocation. The thorax was opened by a middorsal incision, and the heart was rapidly removed and placed in cold perfusion fluid (10° C). The aorta was cannulated, and the heart was connected to a Langendorff perfusion system. The coronary arteries were perfused with a pressure of 50 mmHg, resulting in a flow of 42 ± 6 ml/min. The millimolar composition of the perfusion fluid was: NaCl 130, NaHCO3 20.1, KCl 4.0, CaCl2 2.2, MgCl2 0.6, NaH2PO4 1.2, and glucose 12. The solution was saturated with a mixture of 95% O2 and 5% CO2, and the pH was adjusted at 7.35.

In six of the hearts, an endocardial cryotechnique was used to freeze the complete right ventricle, the interventricular septum, and the endocardial and intramural layers of the free wall of the left ventricle (frozen heart).11,12 This cryotechnique was used to avoid epicardial breakthrough of longitudinal wavefronts from deeper layers and to allow complete mapping of electrical activation because no intramural wavefronts were present. Briefly, a cryoprobe was inserted through the pulmonary artery in the right ventricle, filled with liquid N2 (−192° C), and maintained in place until the right ventricle was completely frozen. The heart was then immersed in a tissue bath containing perfusion fluid at 30° C. The cryoprobe

* Assistant in Anesthesiology, Department of Anesthesiology and Critical Care, University Hospital of Nîmes, and Laboratory of Cardiovascular Physiology, Medical School of Montpellier-Nîmes, University of Montpellier I, France.
† Head of the Arrhythmia Unit, Department of Cardiology, Hospital Clinic, University of Barcelona, Barcelona, Spain.
‡ Professor of Physiology and Chairman of the Department of Physiology, University of Limburg, Maastricht, The Netherlands. Received from the Department of Physiology, University of Limburg, Maastricht, The Netherlands. Accepted for publication March 9, 1992.

Address reprint requests to Dr. de La Coussaye: Département d’Anesthésie et de Réanimation, Centre Hospitalier Régional et Universitaire de Nîmes, 5 rue Hoche, 30 029 Nîmes Cedex, France.

132
ARRHYTHMOGENIC EFFECTS OF BUPIVACAINE

was installed in the left ventricular cavity through the left atrium and the coronary circulation was temporarily interrupted. The cryoprobe was filled with liquid N₂ and maintained in place for 7 min. After this period, the coronary circulation was restored; the probe was removed; and the heart was withdrawn from the tissue bath. For the rest of the experiment, the temperature of the heart was kept constant at 37°C. As a result of this procedure, only a thin epicardial layer, about 1 mm thick, of the free wall of the left ventricle survived, the rest of the myocardium being completely destroyed.11,12 We have demonstrated previously that in this thin surviving layer, refractoriness and conduction velocity are not affected by the procedure and remain stable for many hours, suggesting the circulatory condition in the epicardial layer was adequate.12 At the end of the experiments, the hearts were dissected to verify the efficacy of cryoprocedure. In five of the hearts, the endocardial cryoprocedure was not applied, and the Langendorff-perfused rabbit heart was kept intact (intact heart).

PROTOCOL

Recording and Induction of Ventricular Dysrhythmias

High-resolution mapping of epicardial excitation was performed using a spoon-shaped electrode containing 248 unipolar electrodes at regular distances of 2.25 mm. The computerized mapping system allowed simultaneous recording, storage, and automatic analysis of all 248 electrograms and on-line presentation of color-coded activation maps.11,13 Programmed electrical stimulation was performed using a programmable constant current stimulator delivering 2-ms square pulses at twice diastolic threshold for both regular stimulation and induction of premature beats. Bipolar stimulation could be performed through any pair of electrodes in the spoon electrode. Both in the intact and in the frozen hearts, the stimulation protocol consisted of 1) application of one, two, and three premature stimuli (S2, S3, and S4 respectively) delivered with a decreasing coupling interval after ten basic stimuli (S1–S1) at 300-ms intervals in the frozen heart, and at 10 ms shorter than the spontaneous sinus cycle length in the intact heart; and 2) application of trains of ten stimuli at a regular cycle length that was progressively decreased at 10 ms steps until one-to-one capture of the ventricle failed (maximum pacing).

After the inducibility of ventricular dysrhythmias was assessed during control, 0.2 (0.7 µM), 0.5 (1.8 µM), 1.0 (3.5 µM), and 5.0 µg/ml (18 µM), bupivacaine (bupivacaine HCl 0.5%, Roger Bellon, France) was successively infused into the aortic cannula. After 20 min of infusion, inducibility of dysrhythmias was tested again using the same protocol as during control. Once the protocol was completed, normal Tyrode's solution was infused for a 30-min period to return to control conditions, to rule out the possibility of deterioration over time. The occurrence of spontaneous ventricular dysrhythmias was also recorded and analyzed.

Electrophysiologic Measurements

The following parameters at control and 20 min after each dose of bupivacaine were measured: spontaneous sinus cycle length (milliseconds) in intact heart, ventricular effective refractory period (VERP, milliseconds), longitudinal ventricular conduction velocity (centimeters per second), transverse ventricular conduction velocity (centimeters per second), and the anisotropic ratio (longitudinal ventricular conduction velocity/transverse ventricular conduction velocity) in the frozen heart. VERP was defined as the shortest S1–S2 interval still resulting in a propagated premature impulse during regular pacing with a S1–S1 interval of 300 ms. VERP was determined by decreasing the coupling interval of the premature stimulus in steps of 2 ms. As previously described by Clerc14 and Spach et al.,15 cardiac tissue has a different axial resistance along and perpendicular to the fiber axis of the myocardial fibers. This different axial resistance results in direction-dependent differences in conduction velocity (anisotropic conduction). Therefore, pacing at the center of the thin surviving layer of the left ventricle produced an ellipsoidal spread of propagation, with fast conduction parallel to the fiber axis (longitudinal conduction) and slow conduction perpendicular to it (transverse conduction). Conduction velocity was defined as the distance travelled by the wavefront normal to the isochrones per unit time. In each experiment, both longitudinal and transverse conduction velocities and the anisotropic ratio were measured after ten basic stimuli (S1–S1) at 1,000-ms intervals. In addition, to test the use-dependency of the drug, longitudinal ventricular conduction velocity was measured after 10 basic stimuli at 800-, 700-, 600-, 500-, 400-, 300-, and 200-ms intervals.

DEFINITION OF VENTRICULAR DYSRHYTHMIAS

We defined ventricular dysrhythmias as ventricular fibrillation and sustained and nonsustained ventricular tachycardia. Nonsustained ventricular tachycardia was defined as ventricular tachycardia lasting more than three successive beats but less than 30 s before spontaneous termination. Sustained ventricular tachycardia was defined as ventricular tachycardia lasting longer than 30 s. Finally, a separation into monomorphic and polymorphic tachycardia was made. The term monomorphic implied a uniform beat-to-beat QRS morphology. The term polymorphic ventricular tachycardia was defined as the occurrence of continuous change in QRS configuration.
STATISTICAL ANALYSIS

Spontaneous sinus cycle length in the intact heart, and VERP, longitudinal and transverse ventricular conduction velocities, and anisotropic ratio in frozen hearts were expressed as mean ± SD. All of these parameters were analyzed by an two-way analysis of variance followed by a Newman-Keuls test. The chi-square test was used to compare occurrence of dysrhythmias. P < 0.05 was considered statistically significant.

Results

EFFECTS OF BUPIVACAINE ON INDUCIBILITY OF DYSRHYTHMIAS AND ON ELECTROPHYSIOLOGIC PARAMETERS IN THE INTACT HEART

Table 1 shows the occurrence of spontaneous and inducible ventricular dysrhythmias in the intact Langendorff-perfused rabbit heart. No spontaneous dysrhythmias were observed during control and administration of 0.2, 0.5, and 1.0 μg/ml bupivacaine. However, during administration of 5.0 μg/ml bupivacaine, spontaneous ventricular tachycardia occurred in three of five hearts.

By programmed electrical stimulation using up to three premature beats and maximum pacing rate, ventricular fibrillation was induced in all hearts during the control. During administration of 0.2 μg/ml bupivacaine, ventricular fibrillation was induced in three of five hearts using the same protocol. In the remaining two hearts, only sustained monomorphic ventricular tachycardia and nonsustained monomorphic ventricular tachycardia could be induced. During administration of 0.5 μg/ml bupivacaine, the spectrum of dysrhythmias induced by programmed electrical stimulation was completely different. Although in one of five hearts, ventricular fibrillation was still inducible, in the remaining four hearts, sustained monomorphic ventricular tachycardias were the only dysrhythmias induced. At 1.0 μg/ml bupivacaine, the same pacing protocol induced in one of five hearts a sustained polymorphic ventricular tachycardia, and in two of five hearts, nonsustained polymorphic ventricular tachycardias. During administration of 5.0 μg/ml bupivacaine, premature electrical stimulation could not be tested because the hearts became inexcitable.

Figure 1 shows an example of the effects of bupivacaine. In control, ventricular fibrillation occurred after maximal pacing rate at a cycle length of 110 ms. At 0.2 μg/ml bupivacaine, rapid pacing at a cycle length of 140 ms did not induce ventricular fibrillation but did induce nonsustained monomorphic ventricular tachycardia. At 0.5 μg/ml bupivacaine, rapid pacing at a cycle length of 160 ms induced sustained monomorphic ventricular tachycardia. Finally, at 5.0 μg/ml bupivacaine induced a spontaneous idioventricular rhythm.

Spontaneous sinus cycle length (table 1) was not modified at 0.2, 0.5, and 1.0 μg/ml bupivacaine; however, in one preparation, an intermittent atrioventricular block occurred at 1.0 μg/ml bupivacaine. At 5.0 μg/ml, bupivacaine induced a marked and significant bradycardia (P < 0.05). In one preparation, an intermittent idioventricular rhythm occurred (fig. 1). After 30 min wash-out, all preparations recovered to their control values.

<table>
<thead>
<tr>
<th>Table 1. Spontaneous Cycle Length and Cumulative, Spontaneous and Programmed Stimulation Inducible Ventricular Dysrhythmias during Control and Administration of Bupivacaine in Intact Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Spontaneous cycle length (ms)</td>
</tr>
<tr>
<td>Spontaneous dysrhythmia</td>
</tr>
<tr>
<td>1 premature beat</td>
</tr>
<tr>
<td>2 premature beats</td>
</tr>
<tr>
<td>3 premature beats</td>
</tr>
<tr>
<td>F<sub>max</sub></td>
</tr>
</tbody>
</table>

Premature beats were applied during regular pacing at a cycle length of 300 ms or 10 ms shorter than the spontaneous cycle length. Note that at 0.5 and 1 μg/ml, only four of five preparations could be activated by regular pacing at 300 ms and premature beats and none at 5 μg/ml bupivacaine. Chi-square test is nonsignificant.

F_{max} = maximal pacing rate; VF = ventricular fibrillation; SPVT = sustained polymorphic ventricular tachycardia; NSPVT = nonsustained polymorphic ventricular tachycardia; SMVT = sustained monomorphic ventricular tachycardia; NSMVVT = nonsustained monomorphic ventricular tachycardia.
ARRHYTHMOGENIC EFFECTS OF BUPIVACAINE

Fig. 1. Effects of bupivacaine in intact heart. During control (first panel), maximal pacing rate (F_{max}) occurred at a cycle length of 110 ms and induced ventricular fibrillation (VF). At 0.2 μg/ml bupivacaine (second panel), F_{max} occurred at a cycle length of 140 ms and induced nonsustained monomorphic ventricular tachycardia (NSMVT) with a cycle length of 280 ms. At 0.5 μg/ml bupivacaine (third panel), F_{max} occurred at a cycle length of 160 ms and induced sustained monomorphic ventricular tachycardia (SMVT) with a cycle length of 175 ms. At 5.0 μg/ml bupivacaine (fourth panel), spontaneous idioventricular rhythm occurred. No pacing was obtained because the preparation was inexcitable.

EFFECTS OF BUPIVACAINE ON INDUCIBILITY OF VENTRICULAR DYSRHYTHMIAS AND ON ELECTROPHYSIOLOGIC PARAMETERS IN THE FROZEN HEART

After the endocardium was frozen, all measurements were performed during ventricular pacing because no spontaneous atrioventricular conduction was present. However, pacing with a cycle length shorter than 1,000 ms could not be done in one heart at 0.5 μg/ml, two hearts at 1.0 μg/ml, and three hearts at 5.0 μg/ml bupivacaine even using stimuli of high intensity (10 mA) and long duration (4 ms). No spontaneous ventricular dysrhythmias were observed. Table 2 shows that one preparation exhibited sustained monomorphic ventricular tachycardia after rapid pacing during control. However, in three of six preparations, sustained monomorphic ventricular tachycardia was induced at 0.2 μg/ml bupivacaine. Epicardial mapping demonstrated that all these ventricular tachycardias were based on reentry. At concentrations greater than 0.2 μg/ml, no ventricular arrhythmia was induced.

In figure 2, initiation of a regular sustained monomorphic ventricular tachycardia with a cycle length of 271 ms by application of one premature stimulus (S2) during administration of 0.2 μg/ml is shown. During application of the premature stimulus (S2), the impulse encountered a long arc of conduction block extending almost from base to apex. The impulse, however, could turn around this arc of conduction block near the apex, and activation proceeded from apex to base. The impulse arrived at the area distal to the line of block at time 217 ms. The area proximal to the block that was activated at 20 ms could now be reactivated in the opposite direction at 220 ms, and a counterclockwise circular movement around the arc of functional block at a regular cycle length of 271 ms was initiated.

In table 3, the effects of bupivacaine on VERP and conduction velocities in the epicardium of the frozen heart are given. VERP was slightly but significantly prolonged by bupivacaine. Longitudinal and transverse ventricular conduction velocities and the anisotropic ratio were measured during regular pacing at 1,000 ms. There was a significant dose-dependent impairment of both longitudinal and transverse ventricular conduction velocities with no change of the anisotropic ratio. After 30 min washout, all preparations recovered to their control values. At 0.2 μg/ml bupivacaine, ventricular conduction velocities were not significantly impaired during regular pacing at 1,000 ms. However, longitudinal conduction velocity became significantly altered when regular pacing was shortened to 800 ms and less ($P < 0.05$).

In figure 3, four different activation maps obtained during regular pacing at 500 ms in the same heart during

<table>
<thead>
<tr>
<th>Table 2. Cumulative Inducibility of Ventricular Dysrhythmias during Control and Several Doses of Bupivacaine in the Frozen Heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bupivacaine (µg/ml)</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>1 premature beat</td>
</tr>
<tr>
<td>2 premature beats</td>
</tr>
<tr>
<td>3 premature beats</td>
</tr>
<tr>
<td>F_{max}</td>
</tr>
</tbody>
</table>

One heart was inexcitable at 0.5 µg/ml, two hearts at 1.0 µg/ml, and all preparations at 5 µg/ml when pacing at a cycle length shorter than 700 ms. Chi-square test is nonsignificant.

F_{max} = maximal pacing rate; SMVT = sustained monomorphic ventricular tachycardia.
BUPIVACAINE 0.2 μg/ml

S1 S1 S2 VT

300 300 214 271

Fig. 2. Initiation of sustained reentrant ventricular tachycardia during administration of 0.2 μg/ml bupivacaine in ventricular epicardium (after freezing). Top tracing: ECG recorded during induction of ventricular tachycardia with a premature beat (S2). Panels: Four consecutive activation maps are given showing spread of depolarization. Numbers indicate local activation times in milliseconds. Isochrones are drawn at 10-ms intervals. The thick isochrones indicate local conduction block. Arrows indicate direction of activation. Double bars indicate conduction block. LAD = left anterior descending coronary artery. Top left panel shows the conduction blockade resulting from the premature beat, and the first and second beat of the sustained ventricular tachycardia are shown by the top right and bottom left panels, respectively. The pattern of the depolarization during sustained ventricular tachycardia (VT) is shown in the lower left panel. All maps represent the same frontal view of the heart. See text for further description.

control, 0.2, 0.5, and 5.0 μg/ml bupivacaine are shown. Longitudinal ventricular conduction velocity, which during control was 77 cm/s, progressively decreased to 35 cm/s at 5.0 μg/ml bupivacaine. Moreover, during the largest dose of the drug, a long arc of conduction block extending from the base to the mid-left ventricular wall was present. Figures 4 and 5 show the use-dependent effects of bupivacaine on longitudinal ventricular conduction velocity. Figure 4 is a typical example of bupivacaine-induced use-dependent slowing of conduction. Four activation maps obtained during administration of 0.2 μg/ml bupivacaine at four different pacing cycle length are shown. Longitudinal ventricular conduction velocity, which was 60 cm/s at a pacing cycle length of 1,000 ms, progressively decreased to 30 cm/s when the pacing cycle length was decreased to 200 ms. At the shortest pacing cycle, arcs of conduction blocks appeared in the mid-left ventricular wall. Figure 5 presents the average decrease in conduction velocity that was observed with various cycle length stimulation rates at various bupivacaine concentrations.

Discussion

This study demonstrates that bupivacaine decreases ventricular conduction velocity and induces arcs of functional ventricular conduction block in a dose-dependent and use-dependent fashion. Moreover, spontaneous ven-
ARRHYTHMOGENIC EFFECTS OF BUPIVACAINE

<table>
<thead>
<tr>
<th>Bupivacaine (µg/ml)</th>
<th>VERP</th>
<th>δ_L</th>
<th>δ_T</th>
<th>δ_L/δ_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>141 ± 15 (n = 6)</td>
<td>67 ± 9 (n = 6)</td>
<td>30 ± 4 (n = 6)</td>
<td>2.2 ± 0.3 (n = 6)</td>
</tr>
<tr>
<td>0.2</td>
<td>163 ± 21 (n = 6)*</td>
<td>59 ± 8 (n = 6)</td>
<td>27 ± 6 (n = 6)</td>
<td>2.3 ± 0.6 (n = 6)</td>
</tr>
<tr>
<td>0.5</td>
<td>170 ± 17 (n = 6)*</td>
<td>49 ± 5 (n = 6)*</td>
<td>25 ± 2 (n = 5)*</td>
<td>2.1 ± 0.4 (n = 5)</td>
</tr>
<tr>
<td>1.0</td>
<td>172 ± 12 (n = 3)*</td>
<td>41 ± 6 (n = 4)*</td>
<td>21 ± 4 (n = 4)*</td>
<td>2.1 ± 0.5 (n = 4)</td>
</tr>
<tr>
<td>5.0</td>
<td>—</td>
<td>35 ± 12 (n = 3)*</td>
<td>18 ± 5 (n = 3)*</td>
<td>2.2 ± 0.9 (n = 3)</td>
</tr>
<tr>
<td>Wash-out</td>
<td>144 ± 16 (n = 6)</td>
<td>65 ± 8 (n = 6)</td>
<td>29 ± 5 (n = 6)</td>
<td>2.2 ± 0.4 (n = 6)</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD. δ_L = ventricular effective refractory period (milliseconds) measured at regular pacing of 300 ms; δ_T = longitudinal ventricular conduction velocity (centimeters per second) measured at regular pacing of 1,000 ms; δ_L/δ_T = anisotropic ratio measured at regular pacing of 1,000 ms. *P < 0.05 versus respective control value.

Tricular dysrhythmias were observed at the largest dose of bupivacaine (5.0 µg/ml). Finally, epicardial mapping showed that inducible ventricular tachycardias were based on reentry.

Four concentrations of bupivacaine were chosen. All of these solutions in our in vitro study were protein-free. Because bupivacaine is highly bound to plasma proteins, it may be postulated that 0.2, 0.5, and 1.0 µg/ml...
ml correspond to plasma concentrations of approximately 2, 5, and 10 \(\mu \text{g/ml} \) in plasma, assuming 90% binding. However, the amount of plasma-binding decreases through this range so that appropriate values are probably represented by values of 2, 4, and 5 \(\mu \text{g/ml} \). Finally, 5.0 \(\mu \text{g/ml in vitro} \) may correspond to about 14 \(\mu \text{g/ml} \) bupivacaine in plasma, assuming 65% binding.16,18,19 Therefore, the concentration of 0.2 \(\mu \text{g/ml} \) bupivacaine we used is probably similar to the one obtained during regional anesthesia.20-22 In contrast, the three other concentrations of bupivacaine we used should be considered to be in the toxic ranges.18,23,24

Bupivacaine-Induced Ventricular Dysrhythmias

In the intact heart, bupivacaine was able to induce spontaneous ventricular dysrhythmias in three of five preparations—one sustained ventricular tachycardia and two nonsustained ventricular tachycardias. As the hearts were denervated, a direct cardiotoxic effect of bupivacaine could be involved. This was previously demonstrated by Nath et al.,25 who reported direct electrophysiologic disturbances when bupivacaine was injected in the coronary arteries.

Additional information was given by the frozen heart model. This model was used because it allows precise analysis of the complete sequence of activation of the left ventricular epicardium during regular pacing and during the initiation of ventricular dysrhythmias.11,12 In three of six hearts, sustained monomorphic ventricular tachycardia was induced at 0.2 \(\mu \text{g/ml} \) bupivacaine, one ventricular tachycardia after one single premature beat, two ventricular tachycardias after three premature beats, and three after maximal pacing. However, one ventricular tachycardia was already inducible in one preparation at maximum pacing during control. The analysis of the complete sequence of activation during initiation of ventricular tachycardias showed a marked slowing of conduction, arcs of conduction block, and reentry around these arcs of
Bupivacaine induced Electrophysiologic Alterations

At the smallest concentration (0.2 μg/ml), bupivacaine already induced a significant slowing of ventricular conduction velocity during regular pacing from 800 ms and below and VERP prolongation. A slowing in the parameters of ventricular conduction was previously reported in anesthetized dogs, in which a plasma concentration of 1.0 μg/ml bupivacaine induced a slight but significant prolongation of the His-Purkinje conduction time (HV interval) and a widening of the QRS complex.24 Our results are also in accordance with previous in vivo and in vitro studies showing that bupivacaine induces QRS widening and HV prolongation23,24 and a progressive and marked decrease in \(V_{\text{max}} \) of fast action potentials in guinea pig papillary muscle3,4,29 and in rabbit Purkinje fibers and ventricular muscle.5

Bupivacaine impaired both longitudinal and transverse ventricular conduction velocities in a use- and dose-dependent fashion with no modification in the anisotropic ratio. These results are in accordance with our previous study on flecainide using the same model.30 However, they differ from previous studies by Anderson et al.31 and by Kadish et al.32 These authors demonstrated that lidocaine and procainamide, respectively, have a predominant effect on longitudinal conduction velocity. It may be argued that differences in the experimental model (in both studies, canine myocardium was used) might account for the different results.

Our study was focused on the effects of bupivacaine on conduction velocities and therefore on fast sodium channels, but bupivacaine is known to interact with other cardiac channels like calcium and potassium channels.29,33-35 The magnitude of these effects are conflicting or sometimes controversial in terms of animal species and techniques used. Nevertheless, it is now well established that bupivacaine also inhibits the transient outward current in rat ventricular myocytes.36 The inhibition of the transient outward current prolongs the inactivated state of cardiac sodium channels.37 Because bupivacaine preferentially blocks cardiac sodium channels in their inactivated state, Castle37 postulates that bupivacaine-induced inhibition of the transient outward current could enhance the depression of \(V_{\text{max}} \) induced by bupivacaine. It is also established that the transient outward current is present in the epicardium but not in the endocardium.38 This could explain some of the differences in the effects of bupivacaine we observed between intact and frozen hearts. Nevertheless, how this effect could modify the overall proarrhythmic effects induced by bupivacaine, especially in the epicardial layer of tissue, cannot be answered with the experimental protocol we used.

Clinical Implications

Care must be taken in extrapolating these results to the clinical setting. Our study shows that bupivacaine at the free plasma concentration obtained during regional anesthesia (0.2 μg/ml) facilitated the induction of ventricular dysrhythmias by programmed electrical stimula-
tion. However, spontaneous ventricular dysrhythmias occurred only at the largest concentration of bupivacaine (5.0 μg/ml).

Toxic doses of bupivacaine also induce hemodynamic disturbances with a dramatic decrease in contractility.320,20 These hemodynamic abnormalities, which could facilitate the occurrence of ventricular dysrhythmias, do not play a role in a Langendorff model. Furthermore, all the dysrhythmias observed occurred in denervated hearts. In the clinical situation, it is well known that the autonomic nervous system interferes with cardiac electrophysiology.

In particular, the sympathetic nervous system facilitates the occurrence of cardiac dysrhythmias, specially in patients with coronary artery disease40 and with proarhythmic effects of other sodium channel blockers such as flecainide.41 Moreover, it has been reported in humans that bupivacaine given intravenously induces an increase in plasma catecholamine levels.42 Thus, taking into account the studies of Heavner,8 Thomas et al.,9 and Bernards and Artru,10 it may be speculated that the autonomic nervous system could worsen the ventricular dysrhythmias induced by large doses of bupivacaine and could transform, for example, nonsustained ventricular tachycardia into sustained ventricular tachycardia or into ventricular fibrillation.

Our study also demonstrates that 0.2 μg/ml bupivacaine significantly slows ventricular conduction velocity during regular pacing from 800 ms and less. Although we previously reported that bupivacaine plasma levels obtained after lumbar epidural anesthesia do not enhance preexisting atrioventricular and ventricular conduction defects in humans,45 caution must be taken in the use of bupivacaine in these patients.

In conclusion, using high-resolution ventricular epicardial mapping in rabbit hearts, the study shows that bupivacaine depressed both longitudinal and transverse ventricular conduction velocity in a dose-dependent and use-dependent fashion. Atrioventricular conduction block was induced with administration of high doses of the drug or during rapid pacing at lower dose. Finally, bupivacaine is able to induce spontaneous ventricular dysrhythmias in toxic ranges. All of the ventricular tachycardias induced in the frozen heart during bupivacaine administration were based on reentry.

The authors thank Pascale A. Peray, M.D., M.S.C., Department of Epidemiology and Biostatistics, University-Hospital of Nîmes, for her expert advice in statistical analysis.

References
22. Salevsky FC, Whalley DG, Kalant D, Crawhall J: Epidural epi-
nephrine and the systemic circulation during peripheral vascular
23. Hotvedt R, Refsum H, Helgesen KG: Cardiac electrophysio-
logic and hemodynamic effects related to plasma levels of bupivacain-
e in the dog. Anesth Analg 64:588–594, 1985
24. Eledjam JJ, de La Cousaye JE, Brugada J, Masse C, Desch G,
d’Athis P, Sassine A: Cardiac electrophysiological effects of bu-
pivacaine in the anesthetized dogs: Relation with plasma con-
and electrophysiological cardiotoxicity of local anesthetics: An
experimental study with special reference to lidocaine and bu-
26. Moore EN, Spear JP: Natural occurrence and experimental ini-
tiation of atrial fibrillation in different animal species. Atrial Fibril-
lation. Edited by Kulbertus HE, Olson SB, Schlepper M, Molnár, Sw AB Hasstel, 1988, pp 33–41
27. Garrey WE: The nature of fibrillar contraction of the heart. Its
28. Kotkelov DM, Shinder SM, Dailey PA, Brizgys RV, Levinson G,
Shapiro WA, Koike M, Rosen MA: Bupivacaine-induced cardiac
arrhythmias in sheep. Anesthesiology 60:10–18, 1984
29. Lynch C III: Depression of myocardial contractility in vitro by
bupivacaine, etidocaine, and lidocaine. Anesth Analg 65:551–
559, 1986
effects of flecainide: Evidence for increased susceptibility to
31. Anderson KP, Walker R, Lux RL, Ershler PR, Menlove R, Will-
iams MR, Krall R, Middelbrant D: Conduction velocity depression
and drug-induced ventricular tachyarrhythmias: Effects of li-
32. Radish AH, Spear JF, Levine JH, Moore EN: The effects of pro-
cainamide on conduction in anisotropic canine ventricular
33. Coyle DE, Sperelakis N: Bupivacaine and lidocaine blockade of
calcium-mediated slow action potentials in guinea pig vascular
34. Sanchez-Chapula J: Effects of bupivacaine on membrane currents
of guinea pig ventricular myocytes. Eur J Pharmacol 156:308–
308, 1988
35. de La Cousaye JE, Masse C, Bassoul B, Eledjam JF, Gagnol JP,
Sassine A: Bupivacaine-induced slow inward current inhibition:
A voltage clamp study on frog atrial fibres. Can J Anaesth 37:
819–822, 1990
36. Courtney KR, Kendig JJ: Bupivacaine is an effective potassium
channel blocker in heart. Biochim Biophys Acta 939:163–166, 1988
37. Castle NA: Bupivacaine inhibits the transient outward K+ current
but not the inward rectifier in rat ventricular myocytes. J Phar-
macol Exp Ther 255:1038–1046, 1990
38. Krishnan SC, Antzelevitch C: Sodium channel block produces op-
posite electrophysiological effects in canine ventricular epicardial
39. Eledjam JF, de La Cousaye JE, Brugada J, Bassoul B, Gagnol JP,
Fabregat JR, Masse C, Sassine A: In vitro study on mechanisms of
bupivacaine-induced depression of myocardial contractility.
40. Podrid PJ, Fuchs T, Caudinas R: Role of the sympathetic nervous
system in the genesis of ventricular arrhythmia. Circulation
[Suppl 2] 82:1 I 113, 1990
41. Myerburg RJ, Kessler KM, Cox MM, Huijker H, Terracell E,
Interian A, Fernandez P, Castellanos A: Reversal of proar-
rhythmic effects of flecainide acetate and encaiide hydrochlor-
42. Hasselstrom LJ, Morgensen T, Kehlet H, Christensen NJ: Effects
of intravenous bupivacaine on cardiovascular function and
plasma catecholamine levels in humans. Anesth Analg 65:1033–
1058, 1984
43. Eledjam JF, de La Cousaye JE, Colson P, Viel E, Bassoul B, Ber-
tinchart JP, d’Athis P: Is epidural anaesthesia using bupivacaine
safe in patients with atrio-ventricular conduction defects? Acta