Isoflurane Does Not Vasodilate Rat Thoracic Aortic Rings
by Endothelium-derived Relaxing Factor or Other
Cyclic GMP–Mediated Mechanisms

John K. Brendel, M.D.,* Roger A. Johns, M.D.†

Endothelium-derived relaxing factor (EDRF) is a potent endogenous vasodilator that has been indirectly suggested to play a role in isoflurane-mediated vasodilation. To examine directly the possible role of EDRF in isoflurane-mediated vasodilation, isolated rat thoracic aortic rings were suspended for isometric tension measurements, equilibrated to a resting tension of 2 g, and constricted with a 50% maximal concentration (EC50) dose of phenylephrine or KCl. Three groups of rings were studied: endothelium-intact, endothelium-denuded, and endothelium-intact rings treated with nitro-L-arginine methyl ester (L-NAME), a specific inhibitor of EDRF synthesis. Isoflurane was then added at 1, 2, and 3% and 6 in a cumulative manner, allowing 10 min for each concentration to equilibrate. Indomethacin was present in all experiments to prevent the formation of vasoactive prostanoitides. Since EDRF causes vascular relaxation by stimulating soluble guanylyl cyclase and increasing cyclic GMP, the effect of isoflurane on vascular cyclic GMP content was determined as an additional indicator of EDRF-mediated dilation. Rings with intact and denuded endothelium were isolated as described above, constricted with phenylephrine, and challenged with methacholine (positive control) or 1, 2, or 3% isoflurane. After 8 min exposure, the rings were flash-frozen in dry-ice-cooled acetone and homogenized in 1 N HCl for subsequent analysis of cyclic GMP content by radioimmunoassay. Isoflurane caused dose-dependent vasodilation of both KCl- and phenylephrine-constricted rings. In the phenylephrine group, at 2% and 3% isoflurane, endothelium-denuded and L-NAME-treated rings relaxed to a greater extent than endothelium-intact rings (P < 0.01). There were no differences in isoflurane-induced relaxation of any of the KCl-constricted groups. Methacholine, an endothelium-dependent vasodilator, increased cyclic GMP concentration of endothelium-intact vascular rings significantly above control (P < 0.001). Isoflurane 1, 2, and 3% had no effect on cyclic GMP content of either endothelium-intact or endothelium-denuded vessels. Vasodilation of the rat aorta by isoflurane is due to a direct effect on vascular smooth muscle and is independent of the stimulation of EDRF or other cyclic GMP–mediated mechanisms. (Key words: Anesthetics, volatile; isoflurane. Artery, vascular smooth muscle: vasodilation. Endothelium; 3',5'-cyclic guanosine monophosphate; endothelium-derived relaxing factor; guanylyl cyclase.)

RESEARCH IN THE FIELD of vascular physiology has yielded an improved understanding of the cellular pathways of communication between endothelium and smooth muscle.1–3 Endothelium-derived relaxing factor (EDRF) is a potent endogenous vasodilator that is likely to be nitric oxide or a similar nitrogen oxide compound. It is produced by the endothelial cell both basally and in response to a variety of hormones and chemicals.4–6 These include acetylcholine, bradykinin, calcium ionophore (A23187), and adenosine triphosphate, as well as vasoconstrictors such as phenylephrine, serotonin, and norepinephrine, which release EDRF in addition to their direct constricting effects.7–8 These agents cause an increase in endothelial cell cytosolic calcium which, with the cofactors NADPH and calmodulin, activates EDRF synthase which, in turn, metabolizes L-arginine to citrulline and EDRF.9–11 Once produced, EDRF activates vascular smooth muscle soluble guanylyl cyclase to convert guanosine triphosphate to 3',5'-cyclic guanosine monophosphate (cyclic GMP).12–14 Cyclic GMP accumulation has been shown in numerous investigations to correlate with vascular smooth muscle relaxation, probably through the extrusion of calcium from the vascular smooth muscle cytosol.12–14 The understanding of this pathway for EDRF production has allowed for the development of specific inhibitors of EDRF synthase. These inhibitors are analogues of L-arginine, the substrate for EDRF synthase, and include L-NAME and NO-mono-methyl-L-arginine.15–17

There are conflicting reports in the literature on the interactions of isoflurane with endothelium and the role of EDRF in isoflurane-mediated vascular responses. It has been suggested that in canine cerebral arteries,18,19 isoflurane causes an endothelium-independent relaxation. Stone and Johns20 also provided evidence that isoflurane vasodilates rat aortic rings independently of endothelium and that at low concentrations it may inhibit EDRF production. Conversely, Blaise et al.21 reported that 2.3% isoflurane attenuated vasoconstrictor-induced canine coronary artery contraction only when the endothelium was present and suggested that isoflurane may stimulate the release of an endothelium-dependent dilator, possibly EDRF.

The purpose of this investigation was to clarify the conflicting literature regarding the role of EDRF in iso-
flurane-mediated vasodilation using the highly specific EDRF inhibitor L-NAME and by measuring changes in EDRF-stimulated vascular smooth muscle cyclic GMP.

Materials and Methods

In accordance with institutional Animal Care Committee standards, male Sprague-Dawley rats (300–350 g) were killed and the descending thoracic aorta gently removed and placed in modified Krebs' buffer (NaCl 111 mM, KCl 5 mM, NaH₂PO₄ 1 mM, MgCl₂ 0.5 mM, NaHCO₃ 25 mM, CaCl₂ 2.5 mM, Dextrose 11.1 mM). The aorta was then dissected clean of fat and extraneous tissue and divided into 2.5–3.0-mm ring segments. The rings were either left intact (i.e., with endothelium) or denuded of endothelium by gentle rotation on a forceps.

ISOMETRIC TENSION MEASUREMENTS

The vessel rings were suspended in 37°C water-jacketed 25-ml tissue baths containing 10 ml modified Krebs' solution gassed with 95% O₂, 5% CO₂ at 41/min and connected to Grass FT-03® force transducers (Quincy, MA) for isometric tension measurement. The optimal resting tension of 2 g was predetermined by length–tension relationship experiments. The buffer was changed every 15 min during a 60-min equilibration period.

Endothelial cell status was confirmed by constricting the rings with phenylephrine (1 × 10⁻⁷ M) followed by methacholine 1 × 10⁻⁶ M, known to be an endothelium-dependent vasodilator of vascular smooth muscle. Rings relaxing more than 60% to methacholine were considered intact. Denuded rings showed no relaxation. Rings were washed, reequilibrated to baseline tension, and constricted with a 50% maximal concentration (EC₅₀) of phenylephrine, 1 × 10⁻⁷ M for intact vessels and 5 × 10⁻⁸ M for denuded/L-NAME-treated endothelium-intact vessels, or with KCl 4 × 10⁻⁶ M. The EC₅₀ for phenylephrine was different between endothelium-intact and -denuded or L-NAME-treated vessels because phenylephrine releases EDRF from the endothelium in addition to effecting constriction directly.²⁸⁻²⁹ Studies were also performed with KCl-constricted vessels because KCl has no effect on EDRF. Preliminary experiments demonstrated stable constriction for phenylephrine and KCl for the duration of our experiments.

Three groups of rings were studied for each constrictor: 1) endothelium-intact, 2) endothelium-denuded, and 3) L-NAME-treated endothelium-intact rings. L-NAME (10⁻⁴ M) had no effect on resting tone nor did L-NAME alter the vasodilator response to sodium nitroprusside (10⁻⁶ M). We have demonstrated previously that L-NAME maximally inhibits EDRF release from rat aortic ring endothelium and from endothelial cell–vascular smooth muscle cocultures at a concentration equal to that used in the current study.¹⁷ To confirm L-NAME inhibition of EDRF in the current studies, rings were tested for their response to the EDRF-dependent dilator methacholine. None of the L-NAME–treated rings vasodilated to methacholine. Indomethacin 2.8 × 10⁻⁵ M (an inhibitor of cyclooxygenase metabolism of arachidonic acid) was present in all baths throughout all experiments in order to prevent formation of vasoactive prostanoid metabolites. At maximal plateau constriction, isoflurane was administered at 1, 2, and 3% concentrations for 10 min each, in a cumulative manner. This was achieved by adding isoflurane to the 95% O₂/5% CO₂ gas bubbling the tissue baths using an in-line Fortec® vaporizer (Orchard Park, NY).

Cyclic GMP Analysis

Soluble guanylyl cyclase determinations were made from rings prepared and equilibrated as described above. Rings were divided into two groups: endothelium-denuded and endothelium-intact. After preconstriction with phenylephrine (1 × 10⁻⁷ M) for 5 min, the rings were given either methacholine (1 × 10⁻⁶ M) as positive control or 1%, 2%, or 3% isoflurane for 8 min. The rings were then flash-frozen in dry-ice–cooled acetone and stored at −80°C for subsequent total protein and cyclic GMP determinations.

Cyclic GMP was extracted by homogenization of each ring in 1 ml 1 N HCl (0–5°C). After centrifugation at 2,200 rpm for 10 min, the supernatant was analyzed for cyclic GMP content by radioimmunoassay (¹²⁵I kit, Advanced Magnetics Inc., Cambridge, MA). Protein content was determined by dissolving the remaining pellet in 2 N NaOH and analyzing the total dissolved protein with a BioRad® Protein Assay kit (Richmond, CA).

CHEMICALS/DRUGS

Indomethacin, L-phenylephrine HCl, L-NAME HCl, and acetyl-β-methylcholine HCl (methacholine) were obtained from Sigma Chemical Co. (St. Louis, MO). Sodium nitroprusside was obtained from Fisher Scientific (Pittsburgh, PA). All drugs were dissolved in buffer except indomethacin, which was dissolved in NaHCO₃ (150 mM, pH 8.5). Isoflurane was obtained from Anaquest (Madison, WI). Accurate vaporizer calibration was confirmed using Raman spectroscopy (RASCAL, Albion Labs, Salt Lake City, UT). Isoflurane concentrations in the tissue bath buffer were determined by gas chromatography. Vapor concentration after equilibration of a bath aliquot with a measured volume of air was compared to a standard curve of known concentrations obtained by vaporizing a measured volume of isoflurane (liquid) in a measured volume of air. We achieved 99.8% agreement comparing
the dialled vaporizer concentration to the bath concentration as determined by using the partition coefficient of isofurane in Krebs' solution.²⁴

STATISTICAL ANALYSIS

The data were plotted as mean ± SEM. For isometric tension studies, each point represents 18 rings from each of five animals (n = 5). Percent relaxation was determined by dividing isofurane-induced relaxation (grams) from the stable KCl or phenylephrine plateau constriction by KCl or phenylephrine plateau constriction (grams) and multiplying by 100. For cyclic GMP assays, each point represents four rings (n = 4). The data were analyzed by analysis of variance with multiple-range testing (Newman Keuls test) where needed. P < 0.05 was accepted as significant.

Results

ISOMETRIC TENSION MEASUREMENTS

The absolute tension in grams after phenylephrine (EC₅₀) and KCl preconstriction is given in table 1. The EC₅₀ concentration of phenylphrine was less for the endothelium-denuded and L-NAME–treated rings (5 × 10⁻⁸ M) than for the endothelium-intact rings (1 × 10⁻⁷ M). There were no significant differences in total tension among the phenylephrine-constricted rings among the three groups. In the KCl-constricted rings there was a small but significant (P < 0.05) difference in absolute tension generated in the endothelium-intact rings versus the endothelium-denuded but not the L-NAME–pretreated rings. In the KCl-constricted rings, 1%, 2%, and 3% isofurane produced a dose-dependent relaxation (P < 0.05). There were no significant differences in the isofurane-induced relaxation of any of the KCl-constricted groups (endothelium-intact, endothelium-denuded, or L-NAME–treated) at any concentration of isofurane (fig. 1). In the phenylephrine-constricted rings, isofurane also produced a dose-dependent relaxation among all groups studied (P < 0.05). In addition, isofurane 2% and 3% caused significantly (P < 0.01) less relaxation in the intact versus both the denuded and L-NAME–treated groups (fig. 2).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Endothelium-intact</th>
<th>Endothelium-denuded</th>
<th>L-NAME-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylephrine (1 × 10⁻⁸ M)</td>
<td>1.01 ± 0.16</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phenylephrine (5 × 10⁻⁸ M)</td>
<td>—</td>
<td>1.30 ± 0.14</td>
<td>1.32 ± 0.17</td>
</tr>
<tr>
<td>KCl (4 × 10⁻³ M)</td>
<td>1.92 ± 0.12</td>
<td>1.40 ± 0.17</td>
<td>1.61 ± 0.17</td>
</tr>
</tbody>
</table>

Drug concentrations are those that provided the 50% maximal contractile response (EC₅₀) for each vessel condition. Values are expressed as mean ± SEM; n = 6 animals (18 rings).

* P < 0.05 for KCl intact versus KCl denuded.

CycLic GMP DATA

Isofurane 1%, 2%, and 3% had no effect on cyclic GMP content of endothelium-intact or endothelium-denuded vessels (fig. 3). In comparison, methacholine (1 × 10⁻⁶ M), an endothelium-dependent vasodilator, increased cyclic GMP concentration of endothelium-intact vascular rings significantly (P < 0.001) above control (fig. 3).

Discussion

Isofurane vasodilates most vascular beds, but the mechanism of vasodilation has been unclear. The current data provide evidence for isofurane as a direct vascular smooth muscle vasodilator independent of endothelium-related factors. By using the specific inhibitor of EDRF synthase, L-NAME, to block EDRF production as well as by mechanically denuding the endothelium, we created a model for differentiating EDRF-dependent relaxation from that of direct vascular smooth muscle relaxation. If isofurane stimulates EDRF production, isofurane would be expected to cause a greater vasodilation in endothe-
Phenylephrine constricted

![Graph showing the effect of isoflurane on phenylephrine constricted rings. Intact = endothelium present; denuded = no endothelium; nitro-L-arginine = L-NAME-treated endothelium intact.](image)

Fig. 2. Dose-dependent effect of isoflurane on isometric tension measurement in the phenylephrine constricted rings. Intact = endothelium present; denuded = no endothelium; nitro-L-arginine = L-NAME-treated endothelium intact. *P < 0.05 (endothelium-intact response compared to endothelium-denuded and compared to L-NAME-treated endothelium-intact rings). Values are expressed as mean ± SEM. Each point represents 18 rings from each of six animals (n = 6).

...tion of this phenylephrine-stimulated EDRF production by isoflurane in endothelium-intact rings would cause a relative constriction compared to endothelium-denuded or L-NAME-treated rings, where no EDRF is present. The fact that rings treated with L-NAME, a specific EDRF inhibitor, responded to isoflurane in the same manner as endothelium-denuded rings strongly suggests that isoflurane is inhibiting EDRF production or action and is not acting to inhibit an endothelium-derived vasconstrictor. Consistent with this explanation, we have observed that isoflurane, like halothane, is a potent inhibitor of EDRF production.

Because EDRF activates soluble guanylyl cyclase, and because it has been demonstrated that cyclic GMP accumulation directly correlates with vascular smooth muscle relaxation by EDRF, we examined isoflurane's ability to stimulate vascular smooth muscle cyclic GMP accumulation. Methacholine, an EDRF-dependent dilator, caused significant increases in vascular smooth muscle content of cyclic GMP. Isoflurane 1%, 2%, and 3% did not cause accumulation of cyclic GMP in either endothelium-intact or endothelium-denuded rings, demonstrating that vasodilation by isoflurane does not involve cyclic GMP-mediated mechanisms.

Flynn et al. evaluated endothelium-denuded and N⁰-mono-methyl-L-arginine–treated canine cerebral vessels precontracted with serotonin and challenged with isoflurane. They found that the dose-dependent vasodilation...
by isoflurane was endothelium independent. Jensen et al.19 also found dose-dependent, non–endothelium-mediated vasodilation by isoflurane in rabbit cerebral arteries. Stone and Johns20 investigated the vasodilating response to isoflurane in phenylephrine-preconstricted rat thoracic aorta. When administered slowly at concentration increments of 0.5%, isoflurane at lower concentrations produced vasconstriction in endothelium-intact vessels but vasodilation in denuded vessels. Once higher concentrations were achieved, they noted endothelium-independent vasodilation in both groups. In the current studies, when anesthetics were administered in larger increments, we observed no overall vasoconstriction at any concentration but did note occasional transient vasoconstriction in the endothelium-intact rings at 1% and 2% isoflurane.

In contrast to the above studies, Blaise et al.21 indirectly suggested that isoflurane may stimulate the release of an endothelium-dependent dilator, possibly EDRF. They reported that isoflurane, studied at 2.3% concentration only, attenuated phenylephrine, prostaglandin F\textsubscript{2α}, and serotonin-induced dose-dependent vasoconstriction of dog coronary arteries to a greater degree when the endothelium was intact than when it was denuded. The extent of this difference between endothelium-intact and endothelium-denuded rings varied widely with the specific vasoconstrictor studied.21

The discrepancy between our results and those of Blaise et al.21 could relate to differences in the species or vascular bed studied or to the indirect manner in which their studies were performed. The current experiments, which failed to demonstrate an endothelial component of isoflurane-induced vasodilation, studied the direct vasodilating actions of isoflurane over a wide range of concentrations. In addition to studying endothelium-intact and endothelium-denuded vessels, we clearly ruled out EDRF production by isoflurane through the use of the specific EDRF inhibitor L-NAME and by the measurement of cyclic GMP. Because the pathway for EDRF production is highly conserved across species and vascular beds, it is unlikely that differences in species or vessel type27–28 account for the discrepancies between the data of Blaise et al.21 and those of Jensen et al.,19 Flynn et al.,18 Stone and Johns,20 and our own. We chose the rat thoracic aorta as our model because it has been studied extensively and has been well demonstrated to contain all components of the EDRF pathway.

In summary, isoflurane produced dose-dependent vasodilation of endothelium-intact, endothelium-denuded, or L-NAME–treated rat aortic vascular rings preconstricted with either phenylephrine or KCl. Vasodilation by isoflurane is not mediated by EDRF, and the process does not involve the production of cyclic GMP.

References

19. Jensen NF, Todd MM, Kramer DJ, Leonard PA, Warner DS, Bollen BA: The role of the endothelium in modulating the va-
nudilation induced by isoflurane in the rabbit basilar artery (ab-
20. Stone DJ, Johns RA: Endothelium-dependent effects of halothane,
21. Blaise MD, Sill JC, Nugent M, Van Dyke RA, Vanhouette PM:
Isoflurane causes endothelium-dependent inhibition of con-
tracile responses of canine coronary arteries. ANESTHESIOLOGY
67:515–517, 1987
22. Cocks TM, Angus JA: Endothelium-dependent relaxation of cor-

23. Demirel E, Turker RK: Effect of endothelium on phenylephrine-
induced contraction in the isolated aortic strips. Pharmacology
38:34–39, 1989

24. Renzi F, Waud BE: Partition coefficients of volatile anesthetics in
25. Uggeri MJ, Proctor GJ, Johns RA: Halothane, enflurane, and iso-
flurane attenuate both receptor- and non-receptor-mediated
EDRF production in rat thoracic aorta. ANESTHESIOLOGY 76:
1012–1017, 1992
26. Muldoon SM, Hart JL, Bowen KA, Freas W: Attenuation of en-
dotheilium-mediated vasodilation by halothane. ANESTHE-

27. Miller VM, Vanhouette PM: Heterogeneity in endothelium-de-
pendent relaxations: Acute, chronic and evolutionary modu-
lations, Relaxing and Contracting Factors. Edited by Vanhouette
PM. Clifton, The Humana Press, 1988, pp 283–307
28. Vanhouette PM, Miller VM: Heterogeneity of endothelium-de-
pendent responses in mammalian blood vessels. J Cardiovasc
Pharmacol 7:S12–S23, 1985