Brain Edema and Neurologic Status Following Head Trauma in the Rat

No Effect from Large Volumes of Isotonic or Hypertonic Intravenous Fluids, With or Without Glucose

Yoram Shapira, M.D., Ph.D.,* Alan A. Artru, M.D., † Shamay Cotev, M.D., ‡ Michael Muggia-Sulam, M.D., § Herbert R. Freund, M.D. ¶

Disagreement exists regarding the need to restrict the administration of fluid and glucose following head injury to prevent cerebral edema and neurologic deterioration. We examined whether blood osmolality and glucose, neurologic outcome, and the development of brain edema following head trauma were altered by intravenous infusion of large volumes of isotonic or hypertonic fluids that contained or did not contain glucose. Fifty-five rats that survived ether anesthesia and closed head trauma (delivered using a weight drop device) were assigned to one of five groups. In the first group no fluid was infused. In the second group minimal volumes of saline were infused during placement of a jugular vein catheter. In the three remaining groups 10 ml/kg1·h-1 of either total parenteral nutrition (TPN) (glucose 25%, amino acids 4.25%, 40 meq/l sodium and 40 meq/l potassium, 135 mOsm/kg), dextrose 5% in 0.45% saline (495 mOsm/kg), or Haemaccel (isotonic plasma expander, 298 mOsm/kg) was infused via the jugular vein. Following head trauma and cannula placement, ether was discontinued. Neurologic severity score at 1 and 18 h after head trauma was used to assess neurologic outcome. A score between 0 and 6 was assigned by an observer who was blinded as to the experimental groups, with 0 representing no neurologic damage and 6 representing severe damage. Specific gravity of brain tissue samples containing gray matter and subcortical white matter from the traumatized and contralateral hemispheres was measured at 18 h after head trauma to determine the development of brain edema. There were no statistically significant differences in neurologic outcome and brain edema between the groups. Blood osmolality (318 ± 8 mOsm/kg, mean ± SD) and glucose (17.5 ± 4.2 mM) were increased in the group receiving total parenteral nutrition but not in the groups receiving dextrose 5% in 0.45% saline or Haemaccel. It is concluded that giving large volumes of isotonic or hypertonic intravenous solutions, with or without glucose, for 18 h after head trauma does not significantly alter neurologic outcome or formation of brain edema in rats. (Key words: Blood; glucose; Brain edema; head injury. Fluid balance: crystalloid; Haemaccel; osmolality. Nutrition: parenteral.)

Patients suffering severe head trauma traditionally are treated by restriction of fluid and glucose intake. The stated reason for fluid restriction is to reduce brain water content and to prevent cerebral edema and increased intracranial pressure.1 Collins et al.5 advocated that fluid be restricted to 75 ml/h for adults. McComish and Bodley9 suggested that no more than 60 ml/h should be administered. However, the efficacy of fluid restriction has been questioned. Thomas and Gurdjian8 recommended moderate fluid restriction during the first 24 h only. Safar and Bircher8 and Becker and Garner6 suggested 125 ml/h of 5% dextrose in 0.45% saline solution for adults. They claimed that overhydration, per se, will not cause brain edema if the serum sodium concentration remains normal. Studies by others indicated that vigorous fluid resuscitation following head injury,7 cold injury,6 or brain ischemia,6 regardless of the fluid used, did not have major adverse effects on either the injured or noninjured brain in the posttrauma period. Isotonic as well as hypertonic solutions were advocated and used in those studies. The effect of hyperglycemia on focal cerebral ischemia remains controversial. Several studies reported that hyperglycemia worsens the injury,9,10,11 whereas others found that hyperglycemia either decreases11,12 or has no effect on13 the extent of cerebral injury. Moreover, total parenteral nutrition (TPN), which improved out-

* Acting Assistant Professor of Anesthesiology, Department of Anesthesiology, University of Washington School of Medicine. † Professor of Anesthesiology, Department of Anesthesiology, University of Washington School of Medicine. ‡ Professor of Anesthesiology, Department of Anesthesiology, Ein Karem Medical Center. § Associate Professor of Surgery, Department of Surgery, Ein Karem Medical Center. ¶ Professor of Surgery, Department of Surgery, Mount Scopos Medical Center. Received from the Department of Anesthesiology, University of Washington School of Medicine, Seattle, Washington, and the Departments of Anesthesiology and Surgery, Ein Karem Medical Center and Department of Surgery, Mount Scopos Medical Center, The Hebrew University Haddassah Medical School, Jerusalem, Israel. Accepted for publication February 18, 1995. Presented in part at the Seventh International Symposium on Intracranial Pressure and Brain Injury, June 19–23, 1988, Ann Arbor, Michigan. Address reprint requests to Dr. Artru: Department of Anesthesiology, RN-10, University of Washington School of Medicine, Seattle, Washington 98195.

come in critically ill patients, §§ has been reported to improve survival rates and neurologic status in patients following head trauma.

The present study was designed to determine whether administration of glucose and large volumes of intravenous (iv) fluid (three times the calculated daily requirement) after head injury in rats significantly altered blood composition or neurologic outcome. The solutions studied were either isotonic or hypertonic and either contained or did not contain glucose. The blood values we examined were osmolality and concentrations of glucose, sodium, and urea. The neurologic values we examined were brain edema and severity of neurologic deficit.

Materials and Methods

Effects of Experimental Treatments

The methodology used for the three parts of this study conformed to the Guiding Principles in the Care and Use of Animals by the Council of the American Physiologic Society and was approved by the institutional Animal Care Committee. Sixty-two adult male Sabra rats (Hebrew University strain) weighing 328 ± 57 g (mean ± SD) were anesthetized in a bell jar containing ether-drenched cotton. Rats breathed spontaneously, and their tracheas were not intubated. Corneal reflexes were assessed at intervals, and anesthesia was considered sufficient for surgery once corneal reflexes were abolished. A midline scalp incision was made; the scalp and underlying muscles were reflected laterally; and closed head injury was delivered to the skull over the frontal portion of the left cerebral hemisphere by a special weight drop device. The weight drop device was designed to deliver a standard blow to the cranium resulting in a controlled head injury. Impact is delivered by a silicone-coated metal tip that extrudes from a platform falling down a frame. Settings on the frame control the distance of the fall of the platform. The reproducibility of the impact was determined previously by measuring the velocity developed during the free fall of the platform and the change in the velocity of the tip on collision with the target.

Following head trauma, 7 rats became apneic and died. The 55 rats that survived and continued to breathe spontaneously were randomized into five experimental groups of 8–14 animals each. In group 1 (n = 14), the jugular vein was not cannulated, and no fluids were infused. Groups 2–5 underwent jugular vein cannulation with a 22-G medical-grade silicone tubing attached to a swivel mechanism enabling continuous infusion while rats moved freely in metabolic cages. In group 2 (n = 12), minimal volumes of saline were infused only as needed for placement of the catheter. In groups 3–5, large volumes of solution (three times the calculated daily requirement) were infused through the jugular catheter at a rate of 10 ml·kg⁻¹·h⁻¹ for 18 h. Group 3 (n = 11) received a TPN formula containing amino acids 4.25% (Travasal-Baxter), glucose 25%, (for a total of 0.77 g protein and 18 cal per 100 g body weight per 18 h), Na⁺ 40 mEq/l, K⁺ 40 mEq/l, MVI₁₂ 5 ml/l, vitamin C 250 mg, Cl⁻ 50 mm, acetate 70 mm, P⁺ 15 mm, Zn²⁺ 10 mg, Cu²⁺ 1 mg, Mg²⁺ 5 mm, and Ca²⁺ 2.25 mm with an osmolality of 1,935 mOsm/kg. The infusion rate was 3.4 ml/h, providing an 18-h cumulative volume of 61.8 ± 3.3 ml (mean ± SD). Group 4 (n = 10) received 5% dextrose in 0.45% saline solution (495 mOsm/kg) at a rate of 3.5 ml/h, providing an 18-h cumulative volume of 63.4 ± 2.7 ml. Group 5 (n = 8) received Haemaccel (Hoechst Pharmaceuticals, Middlesex, U.K.), a polypeptide manufactured from bovine gelatin with molecules of an average molecular weight of 35,000 D and osmolality of 298 mOsm/kg. The infusion rate was 3.1 ml/h, providing an 18-h cumulative volume of 56.5 ± 3.1 ml. In all groups, anesthesia was discontinued after head injury was delivered, and animals were returned to their cages, where unlimited food and water were supplied.

At both 1 and 18 h following head trauma, a neurologic severity score (NSS) was determined. This NSS assesses the clinical condition of the rats (mobility, reflexes, seeking behavior, and focal neurologic deficits) following head trauma, with a score of 0 indicating no neurologic impairment and a score of 6 indicating severe impairment (table 1). NSS was determined at 1 h to assess the severity of damage caused by the cranial impact and to provide a post–head trauma “baseline” for comparison with later evaluations. NSS at 18 h assessed the effects of the experimental treatments. The examination was carried out in a light room by an observer who was blinded as to the experimental groups.

| Table 1. Neurologic Severity Score for Evaluation of Clinical Condition at 1 and 18 h after Head Trauma |
|---|--|
| Inability to exit from a circle | Points |
| 50 cm in diameter | 1 |
| For 30 min | 1 |
| For 60 min | 1 |
| Loss of righting reflex | 1 |
| For 30 min | 1 |
| For 60 min or more | 1 |
| Loss of seeking behavior | Hemiparesis or hemiplegia |
| Maximum score (worst deficit) | 0.5 or 1 |

OUTCOME AFTER HEAD TRAUMA; IV FLUIDS AND GLUCOSE

With this model of closed cranial impact, we previously reported that cerebral edema is maximal at about 18 h after injury and gradually resolves within the next several days. Accordingly, in the present study, rats were decapitated at 18 h after head trauma and their brains rapidly removed (42 ± 5 s, mean ± SD). For the traumatized hemisphere, a tissue sample was taken from an area adjacent to the traumatic lesion, and for the nontraumatized hemisphere, a sample was taken from a corresponding contralateral site. Samples of up to 0.5 g that contained portions of the temporal and frontal cortices from each hemisphere (gray and subcortical white matter) were hand-cut on an ice-cooled glass plate and placed into gradient columns for determination of specific gravity. Specific gravity of brain tissue was determined by the method of Marmarou et al. using linear gradient columns of kerosene and bromobenzene. A calibration curve was generated for each column using anhydrous K$_2$SO$_4$ solution of known specific gravity (1.045, 1.040, 1.035, and 1.025). Urine was collected over 18 h and analyzed for urea, sodium, and glucose. Blood was sampled from the carotid arteries into heparinized vials during decapitation. Samples were analyzed for concentration of urea, sodium, and glucose using a Technicon SMAC II System (Technicon Instruments Corp., Tarrytown, NY). Plasma osmolality was analyzed by the freezing-point–depression method using a Fiske Osmometer (Fiske Associates, Needham Heights, MA).

EFFECTS OF ANESTHESIA

To ensure that residual effects of ether would not impair neurologic assessment at 1 h after discontinuing anesthesia, an additional group of eight rats (weighing 379 ± 34 g) was studied. Anesthesia was induced with ether; the scalp was incised; no cranial impact was delivered; and anesthesia was discontinued. Because the site for surgical preparation was located immediately adjacent to the weight drop device, the time required to place rats in the device and deliver a cranial impact following scalp incision was only several seconds. Thus, the duration of anesthesia in this additional group was virtually identical to that in groups 1–5.

DETECTION OF CEREBRAL EDEMA

To ensure that the present model was suitable to detect an increase of brain edema following head trauma, a second set of additional studies was performed. In six rats (weighing 392 ± 21 g), anesthesia was induced with ether; the scalp was incised; and a cannula was inserted into a femoral artery for blood sampling and determination of arterial blood pressure and heart rate. Cranial impact was delivered; 20 ml distilled water was infused iv; and anesthesia was discontinued. Blood was sampled at 10 min and 1 h after completing the infusion of distilled water, and blood sodium concentration and hematocrit and plasma osmolality were determined. Rats then were decapitated, their brains rapidly removed, and brain tissue samples taken for determination of specific gravity as described above.

Data from the principal experimental groups in this study (n = 55) were tabulated as the mean ± SD. The data for the treatment groups versus time (1 and 18 h) and the treatment groups and specific gravity (left and right) were evaluated using a two-way analysis of variance. Data measured at only one time period were evaluated using one-way analysis of variance. Where the calculated F value exceeded the critical value for the 0.05 probability level, the Student-Newman-Keuls test was used to determine which differences were significant at P < 0.05. Data for NSS were evaluated using the Kruskal-Wallis test with post hoc evaluation using the Mann-Whitney U-test. NSS data were tabulated as median and range. Two-tailed Spearman's rank correlation test was used to examine for a correlation between NSS and specific gravity. A P value < 0.05 was considered significant.

Results

EFFECTS OF EXPERIMENTAL TREATMENTS

Rats in groups 1 and 2 drank 3–4 ml water during 18 h, while rats in groups 3–5 drank no water. Groups 3–5 were infused with 60.8 ± 1.8 ml/18 h and urinated 45.5 ± 8.3 ml/18 h as compared to 5.5 ± 1.5 ml/18 h of urine in groups 1 and 2.

Neurologic Severity Score

There was no significant difference in the NSS between the experimental groups prior to head trauma or at 1 or 18 h after injury (fig. 1). The combined median NSS at 1 h postrauma for all groups was 3 (range 0–6). At 18 h the combined median NSS for all groups was 1 (range 0–4) (P < 0.05).

Specific Gravity

Figure 2 summarizes brain tissue specific gravity of the ipsi- and contralateral hemispheres in the five experimental groups 18 h after trauma. The left, contused hemisphere showed a statistically significant (P < 0.01) decrease in specific gravity as compared to the noncontused hemisphere, indicating brain edema in all groups. There was no statistically significant difference in brain tissue specific gravity between the experimental groups. There was a negative linear correlation between the NSS at 1 and 18 h postrauma and the specific gravity of the
FIG. 1. Median values for neurologic severity score (NSS) are shown for the five treatment groups at 1 h (stippled bars) and 18 h (open bars) after head trauma. A nonpenetrating cranial impact was delivered to all rats by a stereotaxically guided weight drop device. All rats had free access to food and water. In group 1 the jugular vein was not cannulated and no fluids were infused. In groups 2–5 the jugular vein was cannulated and the following fluids were infused: group 2 received minimal volumes of saline only as needed for placement of the catheter; group 3 received total parenteral nutrition at 10 ml·kg⁻¹·h⁻¹; group 4 received 5% dextrose in 0.45% saline solution at 10 ml·kg⁻¹·h⁻¹; and group 5 received Haemaccel at 10 ml·kg⁻¹·h⁻¹. NSS did not differ between groups at either 1 or 18 h following head trauma. The filled circles represent the data for each group at both 1 and 18 h. Combined median NSS for all groups at 18 h was significantly decreased (P < 0.05) compared to combined median NSS at 1 h.

Contused brain hemisphere (at 1 h r = 0.41, n = 42, P < 0.01; at 18 h, r = 0.28, n = 55, P < 0.05; fig. 3).

Laboratory Results

In the TPN group, blood osmolarity (318 ± 8 mOsm/kg) was significantly increased compared to that in the instrumented controls (group 2, 301 ± 3 mOsm/kg), and blood glucose (17.5 ± 4.2 mm) and urine glucose (27.5 ± 2.5 mm) were significantly increased compared to the other treatment groups (table 2). In the group receiving 5% dextrose in 0.45% saline, blood urea (3.80 ± 0.42 mg/100 ml) was decreased compared to the other treatment groups, and urine urea (113.5 ± 35.4 mg/100 ml) was decreased compared to that in the instrumented controls (group 2, 478.0 ± 103.2 mg/100 ml).

Effects of Anesthesia

In the same examination setting as that used for rats receiving head trauma, the NSS of nontraumatized rats was 0 (no neurologic impairment) within 5 min of removal from the anesthetic chamber.

Detection of Cerebral Edema

Plasma osmolality, initially 301 ± 10 mOsm/kg, decreased by 20 ± 5 mOsm/kg. Blood sodium concentration and hematocrit, initially 144.6 ± 1.2 mEq/l and 32 ± 1% respectively, decreased by 12.8 ± 5.6 mEq/l and 11 ± 5%. Specific gravity of the contused (left) hemisphere was 1.0375 ± 0.0021, significantly decreased compared to the noncontused (right) hemisphere in this study (1.0430 ± 0.0020) and to the mean specific gravity of the contused hemispheres from groups 1–5 (1.0391 ± 0.0021). The median NSS at 1 h was 4 (range 3–5).

Discussion

Effects of Experimental Treatments

This study evaluated the impact of fluid loading and glucose administration on brain edema and neurologic status following head trauma in rats. During 18 h following head trauma, rats received iv fluids at 10 ml·kg⁻¹·h⁻¹, which is about three times more than the normal oral intake of the rat. Three types of fluids were used: Haemaccel, which is an isotonic plasma expander; dextrose 5% in 0.45% saline, which is mildly hypertonic;

FIG. 2. Values for specific gravity are shown for the five treatment groups at 18 h after head trauma. Stippled bars represent values from the contused (left) hemisphere, and filled bars represent values from the noncontused (right) hemisphere. Values are mean ± SD. A nonpenetrating cranial impact was delivered to all rats by a stereotaxically guided weight drop device. All rats had free access to food and water. In group 1 the jugular vein was not cannulated and no fluids were infused. In groups 2–5 the jugular vein was cannulated and the following fluids were infused: group 2 received minimal volumes of saline only as needed for placement of the catheter; group 3 received total parenteral nutrition at 10 ml·kg⁻¹·h⁻¹; group 4 received 5% dextrose in 0.45% saline solution at 10 ml·kg⁻¹·h⁻¹; and group 5 received Haemaccel at 10 ml·kg⁻¹·h⁻¹. Specific gravity did not differ between groups for either the left or right hemisphere. Asterisks indicate that in all groups specific gravity of the left hemisphere was significantly decreased (P < 0.05) compared to that of the right hemisphere.
and a TPN formula containing 25% dextrose and 4.25% amino acids, which has an osmolarity about seven times greater than that in blood. Although these three iv solutions differed significantly with respect to osmolality and glucose concentration, brain edema and neurologic status at 18 h following trauma was similar in all groups. It is possible that discrete samples of brain tissue from edematous, borderline, and nonedematous areas would provide additional information regarding regional brain tissue specific gravity values. Also, brain edema and neurologic status did not differ significantly among groups, despite the increase in blood osmolality and glucose in the TPN group. Moreover, there was a negative correlation between the NSS at 1 and 18 h after trauma and brain edema. The results are relevant to two aspects of care of patients following head trauma: selection of iv fluid and glucose administration.

EFFECTS OF ANESTHESIA

It was concluded from this additional set of studies that residual effects of ether did not impair neurologic assessment at 1 h after discontinuing anesthesia.

DETECTION OF CEREBRAL EDEMA

The finding of principal interest in this group was that greater brain edema was evident in rats receiving hypotonic fluid iv to decrease plasma osmolality to 281 ± 5 mOsm/kg than in rats receiving iso- or hypertonic fluid iv and having plasma osmolalities in the range of 301 ± 3 to 318 ± 8 mOsm/kg (groups 1–5). It was previously reported in rabbits that withdrawal of blood (60–120 ml) and replacement with hypopsmolar crystalloid (273 mOsm/l) to decrease hematocrit from 41 ± 1% to 20 ± 1% or withdrawal of plasma (130 ± 14 ml) and replacement with hypopsmolar crystalloid (205 ± 20 ml of a 112 mOsm/l solution) decreased brain tissue specific gravity by 0.0009–0.0014.18 Thus, in the present study, it was expected that water from the hypotonic fluid given iv would pass from blood into brain tissue, causing more edema in the contused hemisphere than that occurring following cranial impact in rats given iso- or hypertonic fluid iv. Our finding of decreased specific gravity in head-injured rats given hypotonic fluid as compared to head-injured rats given iso- or hypertonic fluid indicates that the present model is suitable to detect an increase in brain edema following head trauma. That brain tissue specific gravity was not decreased in the noncontused hemisphere of rats that received 20 ml hypertonic fluid and from which no blood or plasma was withdrawn (i.e., the present additional group) presumably reflects adequate clearance of brain tissue water by the uninjured brain.

SELECTION OF INTRAVENOUS FLUID FOLLOWING HEAD INJURY

In the present studies, brain edema in rats receiving colloid-containing solutions was not significantly different from that in rats receiving crystalloid solutions. Colloid-containing solutions have traditionally been used in neurosurgery, because of concern that reduction in colloid osmotic pressure will cause brain edema, as it causes peripheral edema. It was previously reported that, in the brain, water content following colloid administration is not significantly different from that following crystalloid administration.7,8,18–22 The key determinant of water movement across the intact blood–brain barrier is plasma osmolality, rather than colloid oncotic pressure.

In a study in rabbits with no brain injury, plasma was removed and replaced with solutions of differing osmolality or oncotic pressure, and then brain edema was determined by measuring tissue specific gravity.18 Decrease of plasma osmolality by 15 ± 6 mOsm/kg (from a baseline value of 295 ± 5 mOsm/kg) resulted in a significant increase in cortical water content (≈ 0.5%), whereas a 65% reduction in oncotic pressure (from 20 ± 2 to 7 ± 1

TABLE 2. Blood and Urine Values at 18 h after Head Trauma

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>Urea (mg/100 ml)</th>
<th>Sodium (mEq/l)</th>
<th>Glucose (mmol/l)</th>
<th>Urea (mg/100 ml)</th>
<th>Sodium (mEq/l)</th>
<th>Glucose (mmol/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.47 ± 0.15</td>
<td>155.0 ± 3.6</td>
<td>7.7 ± 1.4</td>
<td>306 ± 7</td>
<td>254.5 ± 86.3</td>
<td>64.5 ± 23.3</td>
</tr>
<tr>
<td>2</td>
<td>6.83 ± 0.69</td>
<td>155.0 ± 2.6</td>
<td>7.3 ± 2.1</td>
<td>301 ± 2*</td>
<td>478.0 ± 103.2†</td>
<td>158.5 ± 45.2</td>
</tr>
<tr>
<td>3</td>
<td>5.95 ± 0.35</td>
<td>151.2 ± 1.4</td>
<td>17.5 ± 4.2‡</td>
<td>310 ± 8*</td>
<td>294.2 ± 11.3</td>
<td>54.1 ± 4.2</td>
</tr>
<tr>
<td>4</td>
<td>5.40 ± 0.42‡</td>
<td>152.0 ± 4.2</td>
<td>8.1 ± 1.7</td>
<td>307 ± 5</td>
<td>113.5 ± 35.4‡</td>
<td>70.5 ± 2.1</td>
</tr>
<tr>
<td>5</td>
<td>6.35 ± 0.38</td>
<td>151.1 ± 2.8</td>
<td>7.8 ± 1.6</td>
<td>304 ± 4</td>
<td>307.1 ± 32.1</td>
<td>63.2 ± 7.1</td>
</tr>
</tbody>
</table>

Values are mean ± SD.

A nonpenetrating cranial impact was delivered to all rats by a stereotaxically guided weight drop device. All rats had free access to food and water. In group 1 the jugular vein was not cannulated and no fluids were infused. In groups 2–5 the jugular vein was cannulated and the following fluids were infused: group 2 received minimal volumes of saline only as needed for placement of the catheter; group 3 received total parenteral nutrition at 10 ml·kg⁻¹·h⁻¹; group 4 received 5% dextrose in 0.45% saline solution at 10 ml·kg⁻¹·h⁻¹; and group 5 received Haemaccel at 10 ml·kg⁻¹·h⁻¹.

* Significant difference, group 2 compared to group 3, P < 0.05; † Significant difference, group 2 compared to group 4, P < 0.05; ‡ Significant difference compared to other treatment groups, P < 0.05.

GLUCOSE ADMINISTRATION FOLLOWING HEAD INJURY

Animal studies provide convincing evidence that dextrose administration, with or without marked hyperglycemia, augments neurologic damage in global cerebral ischemia and spinal cord ischemia. An increased blood glucose concentration also correlates positively with more severe neurologic damage in humans following stroke and cardiac arrest. Administration of relatively small amounts of dextrose, which caused only modest increases in blood glucose, exacerbated neurologic damage in both types of injury. Results from studies using models of focal ischemia suggest that withholding glucose administration or treatment with insulin protects neurologic status only in injuries where reperfusion occurs. Hyperglycemia improved neuronal damage, infarct size, and neurologic outcome when animals experienced ischemia without reperfusion.

In summary, we found that neurologic outcome and formation of brain edema was not significantly influenced by administration of large volumes of isotonic or hypertonic iv solutions, with or without glucose, for 18 h following head trauma in rats. Blood osmolality and the cranial impact. The present studies examined the effects of iv infusion of solutions of differing osmolarity following head trauma. Although the solutions used in the present studies differed from those used by Zornov et al., our results are consistent with their data on brain water content as assessed by wet/dry weight; i.e., in both studies, brain edema was not different between treatment groups.

centration of glucose in blood was increased by administration of large volumes of TPN solution but not by a 5% decrease in 0.45% saline or by Haemaccel. Increase of blood osmolality and glucose did not significantly alter neurologic outcome or the formation of brain edema compared to the treatment given to other groups or to no treatment. These results do not support the proposal that glucose and iv fluid volumes should be restricted when planning fluid management of head injured patients.

References
28. Drummond JC, Moore SS: The influence of dextrose administration on neurologic outcome after temporary spinal cord ischemia in the rabbit. ANESTHESIOLOGY 70:64–70, 1989