CORRESPONDENCE

Anesthesiology
78:616-617, 1993
© 1993 American Society of Anesthesiologists, Inc.
J. B. Lippincott Company, Philadelphia

In Reply—Todd and Warner correctly point to an important practical aspect of bibliographic citation. Certainly the most serious errors in reference lists are those that make it impossible to locate the cited article, but retrievability is only one dimension of publication ethics.

Quite deliberately, we used a broad definition of error to identify ethical concerns with the process of publication. We view accuracy of citation as a fundamental precept of ethical authorship. Authors have practical and moral responsibilities to cite published work exactly as it appears in the original source. On the practical level, writing and publishing are crafts that should adhere to established standards of excellence. On the moral level, to give a complete and accurate version of an article's title and bibliographic elements and to spell authors' names correctly is to demonstrate respect for both the published work and the persons involved in its creation. By disregarding these responsibilities, authors raise troubling issues about what they value and devalue and the care with which they have attended to other aspects of research and publication. We are thus less concerned that readers will overinterpret our study than that writers will continue to place inadequate emphasis on the requirements for accuracy and precision in their work.

M. Faith McLellan, B.A.
Faculty Associate
Department of Anesthesiology
The University of Texas Medical Branch
Galveston, Texas 77555-0591

(Accepted for publication December 3, 1992.)

Accuracy in Reference Citations

To the Editor—The article by McLellan et al.1 and the accompanying editorial by Biebuyck2 offered many excellent suggestions on how to avoid incorrect and misleading reference citations. It is therefore ironic that the same issue in which these commentaries appear contains a glaring error in a reference. In a response to a letter to the editor about an article on amrinone in which a reference was both inaccurately transcribed and misquoted, the responding authors again cited the reference (an abstract)3 incorrectly. They also failed to explain why the reference was misquoted.

Aside from authors, who should be responsible for detecting such mistakes? Obviously, peer reviewers for papers submitted to Anesthesiology cannot check large numbers of references for transcription and content accuracy. The article in question, however, had only 15 references, and those who reviewed it for Anesthesiology surely should have been familiar enough with the literature on amrinone to recognize the error. But perhaps reviewers for Anesthesiology are not responsible for even a cursory check of the references in a submitted manuscript? Do they even have the time for such an activity? A survey conducted by the British Journal of Medicine found that their reviewers spent an average of less than 2 h reviewing a manuscript.4

Eichorn and Yankauer5 have defined two types of reference errors—citation and quotation. Citation errors involve inaccuracies in transcription of the publication information (authors' names, page numbers, and so forth). Quotation errors are much more serious because the cited source does not substantiate, is not pertinent to, or even contradicts the authors' assertions. In an attempt to decrease the number of citation and quotation errors, Yankauer included the following statement in all letters requesting revision of a paper sent to the American Journal of Public Health (AJPH):

Many studies have found a high percentage of errors in reference lists. There may be errors, often typographical, in the citation itself (e.g., author name, initial; volume, year; page; title) or errors of attribution (e.g., reference fails to document statement attributed to it). Please check your references with the original sources, not with someone else's reference lists, and examine your citation for typographical errors.

Yankauer found that adding the above paragraph improved the accuracy of references in AJPH. Although his was not a controlled study, the findings strongly support inclusion of a similar statement in Anesthesiology's instructions to authors or in correspondence regarding manuscripts accepted for publication.

Mark S. Shulman, M.D.
Assistant Professor of Anesthesiology
Tufts University School of Medicine

Renée J. Robillard, M.A.
Director of Editorial Services

Department of Anesthesiology
St. Elizabeth's Hospital of Boston
Boston, Massachusetts 01235

Anesthesiology, V 78, No 3, Mar 1993

References


2. Biebuyck JF: Concerning the ethics and accuracy of scientific citations. Anesthesiology 77:1–2, 1992


(Accepted for publication December 3, 1992.)

Editorial Note:—Dr. Shulman and Ms. Robillard provide a useful and easily accomplished suggestion to reduce the frequency of bibliographic citation errors in papers published in Anesthesiology. Accordingly, we shall include a version of the above quoted paragraph as a part of each letter to authors of papers for which a revision is requested.

Lawrence J. Saidman, M.D.
Editor in Chief

Anesthesiology
78:617, 1993
© 1993 American Society of Anesthesiologists, Inc.
J. B. Lippincott Company, Philadelphia

Halothane and the Guanylate Cyclase System

To the Editor:—Eskinder et al.1 recently demonstrated that halothane stimulates particulate guanylate cyclase activity and increases tissue cyclic guanosine 3,5-monophosphate (cGMP) level in vascular smooth muscle of canine cerebral artery. It is a valuable contribution to the understanding of the mechanisms that underlie cerebral vasodilator effect of halothane. However, their description that the direct effect of halothane on vascular smooth muscle tissue cGMP levels had not been reported before their study is not correct.

We have previously reported that halothane increases cGMP content of endothelium-denuded aorta of the rat.2 However, cGMP content of aorta with intact endothelium was rather decreased by halothane.3 A possible explanation for these observations is that halothane decreased basal production of endothelium-derived relaxing factor (EDRF), and thereby decreased endothelium-dependent cGMP formation, while increasing endothelium-independent cGMP. These results with rat aorta suggested that the stimulating effect of halothane on guanylate cyclase does not play a significant role in the vasodilator effect of halothane in physiologic conditions.

It is a common observation that cerebral artery is more susceptible to the dilator effect of halothane than are extracerebral arteries such as rat aorta. The finding of Eskinder et al. that cGMP level of cerebral artery with intact endothelium was increased by halothane, in contrast to our finding in rat aorta, is consistent with the high susceptibility of cerebral artery to halothane's dilator effect. However, their finding does not necessarily support the hypothesis that stimulating effect of halothane on guanylate cyclase differs in cerebral and extracerebral arteries, because we cannot deny the possibility that the effect of halothane on endothelium (i.e., basal level of EDRF or potential of halothane to reduce it) differs in cerebral and extracerebral arteries.

Kumi Nakamura, M.D.
Instructor in Anesthesia

Hiroshi Toda, M.D.
Fellow in Anesthesia

Department of Anesthesiology
Kyoto University Hospital
Sakyo-ku, Kyoto 606-01, Japan

Yoshio Hatano, M.D.
Professor of Anesthesiology
Department of Anesthesiology
Wakayama Medical College
Wakayama 640, Japan

References


(Accepted for publication December 7, 1993.)