Propofol Depresses the Hypoxic Ventilatory Response during Conscious Sedation and Isohypercapnia

Robert T. Blouin, M.D.,* Harry A. Seifert, M.D.,* H. Daniel Babenco, B.S.,† Pattilyn F. Conard, C.R.N.A.,‡ Jeffrey B. Gross, M.D.§

Background: Propofol infusion at subanesthetic doses provides reliable conscious sedation. However, the ventilatory effects of sedative doses of propofol have not been established. The current study was conducted to determine the effects of propofol sedation on the hypoxic ventilatory response.

Methods: Eight healthy, male volunteers received 1 mg·kg⁻¹ propofol followed by a propofol infusion adjusted to maintain a constant, subanesthetic level of sedation. Hypoxic ventilatory response was measured using an isocapnic rebreathing technique: while keeping P_{O_2} constant (≈ 6 mmHg above pre-study baseline), the authors continuously recorded minute ventilation and tidal volume, and oxygen saturation (S_{PO_2}) decreased from 98 to 70%. Hypoxic response determinations were performed before and during propofol infusion, as well as 30 and 60 min after termination of the propofol infusion.

Results: The slope of the hypoxic ventilatory response curve (Vₐ vs. S_{PO_2}) decreased from 0.88 ± 0.15 to 0.17 ± 0.03 l·min⁻¹·%S_{PO_2}⁻ during propofol sedation (X ± SE). Thirty minutes after discontinuation of the propofol infusion, slope returned to its prepropofol value. In addition, minute ventilation at $S_{PO_2} = 90\%$ decreased during propofol sedation, from 16.1 ± 0.8 to 8.7 ± 0.4 l·min⁻¹, accompanied by a similar decrease in tidal volume at $S_{PO_2} = 90\%$, from 1,099 ± 87 to 523 ± 21 ml. Thirty minutes after discontinuation of the propofol infusion, these variables also returned to their prepropofol values.

Conclusions: The authors concluded that propofol infusion for conscious sedation significantly decreases the slope and causes a downward shift of the hypoxic ventilatory response curve measured during isohypercapnia. (Key words: Anesthetics, intravenous: propofol. Complications: hypoventilation. Conscious sedation. Hypoxia: ventilatory response.)

*Assistant Professor of Anesthesiology.
†Medical Student.
‡Instructor in Anesthesiology.
§Professor of Anesthesiology.

Received from the Department of Anesthesiology, University of Connecticut School of Medicine, Farmington, Connecticut. Accepted for publication July 28, 1993. Supported by the Department of Anesthesiology, University of Connecticut School of Medicine.

Address reprint requests to Dr. Gross: Department of Anesthesiology (LB-063), University of Connecticut School of Medicine, Farmington, Connecticut 06030.

Anesthesiology, V 79, No 6, Dec 1993.

RAPID metabolism and prompt patient recovery have made propofol an attractive choice for "conscious sedation." Clinical situations in which propofol-induced sedation has been used include outpatient oral surgery, gastrointestinal endoscopy, and as a supplement to regional anesthesia. Although some investigators have found significant respiratory depression during propofol-induced sedation, others suggest that this does not occur with subanesthetic doses. We designed the current study to determine the effect of sedation with subanesthetic doses of propofol on the hypoxic ventilatory response.

Materials and Methods

Eight healthy, male volunteers who were nonsmokers, and who ranged in age from 25 to 32 yr, participated in this study, which was approved by our Institutional Review Board. After obtaining written informed consent from each subject, we conducted a pre-study history and physical examination. Exclusion criteria included clinical evidence of cardiac, pulmonary, or CNS disease, allergy to egg or soy products, use of centrally acting medications within the previous week, and a history of drug or alcohol abuse. Subjects refrained from oral intake for 8 h, and from alcohol and caffeine for 24 h before the study.

We inserted 20-G intravenous catheters into both arms of each subject, one for the administration of propofol, the other for blood sampling. We then affixed pulse oximeter (Ohmeda 3700, Boulder, CO, ear probe). ECG, and noninvasive blood pressure (Propaq 104, Beaverton, OR) monitors. Subjects listened to soft symphonic music through stereo headphones to minimize external auditory stimulation during respiratory measurements. Between ventilatory response determinations, subjects breathed room air.

After performing a "baseline" hypoxic ventilatory response (HVR) determination (see below), we ad-
ministered 1 mg·kg⁻¹ intravenous propofol, followed by a continuous infusion via a Bard InfusO.R. (North Reading, MA) pump at an initial rate of 75 μg·kg⁻¹·min⁻¹. Every 2 min, we assessed the level of somnolence⁴ (table 1) by asking the subjects to repeat a standard phrase. Based on this assessment, we adjusted the propofol infusion to maintain a level of somnolence at which subjects exhibited spontaneous eye closure and slurred speech, yet responded to verbal stimuli (somnolence score of 2). A minimum of 30 min after the start of the propofol infusion, and following at least 10 min of unchanged level of somnolence with a constant rate of propofol infusion, we obtained a blood sample for propofol analysis. We then performed a “during propofol” HVR determination.

After the “propofol” HVR determination, we obtained a second blood sample for propofol analysis and terminated the propofol infusion. Thirty minutes later, we obtained a third blood sample and determined the first of two “recovery” HVRs; 60 min after discontinuing the propofol infusion, we performed the final HVR determination. Subjects remained in the laboratory until fully awake, and then were escorted home.

Hypoxic ventilatory response determinations were performed in the following manner. Subjects breathed a mixture of O₂ (21%) and N₂ through a face mask incorporated in a closed, to-and-fro circuit with variable CO₂ absorption.⁵ The measured resistance of the circuit is approximately 0.03 cmH₂O·l⁻¹·min at a flow rate of 100 l/min; the volume of the circuit and rebreathing bag is about 5.5 l. An Instrumentation Laboratories (Lexington, MA) IL200 CO₂ analyzer, calibrated with three reference mixtures of 3, 6, and 9% CO₂ in O₂ (Linde, North Haven, CT, primary standard grade ± 0.01%) continuously measured CO₂ tensions at the mask. A Hans Rudolph (Kansas City, MO) #3700 heated pneumotachograph, along with a Validyne (Northridge, CA) DP45 differential pressure transducer and electronic integrator, determined ventilatory volumes at BTPS. Before each set of measurements, we performed a three-point volume calibration and linearity check with a Collins (Brantree, MA) #3200 “supersyringe.” An AIMG Medspect (St. Louis, MO) mass spectrometer monitored circuit O₂ concentration, and a computer recorded breath-by-breath values for SpO₂, PetCO₂, tidal volume (TV), and minute ventilation (Ve) via an analog-to-digital converter.

For each subject, all HVR determinations were performed at the same CO₂ tension. The target PetCO₂ (46–48 mmHg) was 6 mmHg above each subject’s resting PetCO₂ before propofol administration. To ensure equilibration of CNS medullary centers, subjects breathed 21% O₂ in N₂, with PetCO₂ held constant, for 8 min before each HVR determination. During equilibration, we adjusted O₂ and N₂ delivery to maintain an FIO₂ of 21% and constant volume of the rebreathing bag. At the end of the equilibration period, we stopped the O₂ inflow and began data collection, allowing subjects’ metabolism to decrease the circuit O₂ concentration (fig. 1). We adjusted N₂ inflow to maintain constant rebreathing bag volume and varied CO₂ absorber flow to keep PetCO₂ constant ± 1 mmHg despite changes in ventilation. When O₂ saturation reached 70%, usually within 4 to 5 min after discontinuation of O₂ inflow, we terminated data collection and allowed the subjects to breathe 100% O₂ until SpO₂ increased to baseline.

For each HVR determination, the computer generated five-breath averages⁶ of Ve, TV, and SpO₂, and computed the least squares regressions of Ve and TV versus SpO₂. From the regressions, we computed Ve90 and TV90 (Ve and TV at 90% O₂ saturation) as indices of the position of the ventilatory response curve. To de-

Table 1. Definition of Somnolence Scores

<table>
<thead>
<tr>
<th>Score</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Awake and alert</td>
</tr>
<tr>
<td>3</td>
<td>Relaxed; lethargic response to name</td>
</tr>
<tr>
<td>2</td>
<td>Spontaneous eye closure; responds to loud voice</td>
</tr>
<tr>
<td>1</td>
<td>Responds only to prodding or shaking</td>
</tr>
<tr>
<td>0</td>
<td>Unresponsive</td>
</tr>
</tbody>
</table>

Anesthesiology, V 79, No 6, Dec 1993

Fig. 1. Data from a typical determination of hypoxic ventilatory response, showing five-breath averages of SpO₂, PetCO₂, and Ve.
scribe the precision of CO\textsubscript{2} control during hypoxic re-breathing, we computed the standard deviation of \textit{PET}\textsubscript{CO\textsubscript{2}} during each determination, as well as the regression of \textit{PET}\textsubscript{CO\textsubscript{2}} versus \textit{SpO\textsubscript{2}}.

Blood samples for propofol determination were drawn into heparinized glass tubes from the venous catheter located in the arm contralateral to the propofol infusion. After centrifugation, the plasma was frozen at \textit{\textminus}10\degree C until analysis by high-performance liquid chromatography. The assay has a coefficient of variation of less than 5\%, with bias of \textit{\textminus}1 to +4\% in the range of 0.1\textendash5 \mu g\cdot ml\textendash1.

We analyzed parametric data using two-way ANOVA (subjects \times condition) followed by Bonferroni-corrected paired \textit{t} tests when overall significance was present. Data are expressed as mean \pm SE, with \(P < 0.05 \) indicating statistical significance.

Results

None of the subjects suffered any sequelae as a result of participation in the study. However, while receiving propofol infusion, and breathing room air between HVR determinations, four subjects became transiently hypoxic (\textit{SpO\textsubscript{2}} < 90\%), despite their being responsive to verbal stimuli. We ensured that each subject’s \textit{SpO\textsubscript{2}} exceeded 95\% before HVR determination began. All subjects reached the target level of somnolence during propofol infusion; somnolence scores remained stable during the propofol HVR determinations (level 2 before and after each “propofol” measurement for all subjects). Within 30 min after termination of the propofol infusion, all subjects were fully awake.

The rate of propofol infusion necessary to maintain a somnolence score of 2 was 85 \pm 9 \mu g\cdot kg\textendash1\cdot min\textendash1 (\(X \pm SE \), range 46\textendash127 \mu g\cdot kg\textendash1\cdot min\textendash1). Mean plasma propofol concentrations were 2.0 \pm 0.5 \mu g\cdot ml\textendash1 immediately before, and 2.4 \pm 0.7 \mu g\cdot ml\textendash1 immediately after, the “propofol” HVR determination (\(P = NS \)). Propofol concentrations decreased to 0.7 \pm 0.2 \mu g/ml 30 min after discontinuation of the propofol infusion.

Mean values of \textit{PET}\textsubscript{CO\textsubscript{2}} did not differ significantly among pre-, during-, and two postpropofol measurements. The overall mean variability of \textit{PET}\textsubscript{CO\textsubscript{2}} (as expressed by the standard deviation of \textit{PET}\textsubscript{CO\textsubscript{2}} during each hypoxic challenge, \textit{vide supra}) was 0.68 mmHg, with no significant difference among treatment conditions. The mean slope of the regression of \textit{PET}\textsubscript{CO\textsubscript{2}} versus \textit{SpO\textsubscript{2}} did not differ significantly from zero during pre- and postpropofol determinations. There was a slight, but statistically significant, positive correlation between \textit{PET}\textsubscript{CO\textsubscript{2}} and \textit{SpO\textsubscript{2}} in the “during propofol” determinations (see below). It is most likely that this was related to a modest elevation of \textit{PET}\textsubscript{CO\textsubscript{2}} at the beginning of these hypoxic challenges as a result of propofol-induced ventilatory depression (fig. 2).

During propofol infusion, the slope of the hypoxic ventilatory response decreased from 0.88 \pm 0.15 to 0.17 \pm 0.03 1\cdot min\textendash1\cdot %\textit{SpO\textsubscript{2}}\textendash1 (\(P < 0.005 \)). Thirty minutes after discontinuation of the propofol infusion, the slope recovered to 0.97 \pm 0.15 1\cdot min\textendash1\cdot %\textit{SpO\textsubscript{2}}\textendash1 (\(P < 0.05 \) vs. during propofol, \(P = NS \) vs. baseline; fig. 3). Figure 4 demonstrates the hypoxic ventilatory response curves obtained from one subject. \(\dot{V}_e\textsubscript{90} \) decreased from a baseline of 16.1 \pm 0.8 to 8.7 \pm 0.4 l/min during propofol sedation (\(P < 0.005 \); fig. 5). Likewise, TV90 decreased from 1,099 \pm 87 to 523 \pm 21 ml (\(P < 0.005 \); fig. 6). Both \(\dot{V}_e\textsubscript{90} \) and TV90 recovered to baseline values 30 min after termination of the propofol infusion.

Discussion

The effect of low-dose propofol infusions on the hypoxic ventilatory response has not been described; however, previous investigations have demonstrated decreases in the hypoxic ventilatory response with other

Fig. 2. Mean regression lines of \textit{PET}\textsubscript{CO\textsubscript{2}} versus \textit{SpO\textsubscript{2}} before (“baseline”), during (“propofol”), and 30 min after termination of propofol infusion (“recovery”). The 60-min post-infusion line is omitted for clarity; it is indistinguishable from “baseline.”
sedatives and anesthetic agents. Knill and Clement, for example, showed that subanesthetic doses of enflurane, halothane, diethyl ether, and nitrous oxide significantly decrease the ventilatory response to hypoxemia.7 Similarly, depression of the hypoxic ventilatory response has been shown following midazolam8 and diazepam.9 The possibility of a common inhibitory mechanism of action is supported by the work of Concas et al., who suggested that propofol, like other anesthetics and sedatives, may enhance inhibitory GABAergic transmission.10

Previous evaluations of the ventilatory depressant effects of propofol sedation used apnea and SpO2 as out-
come variables. Patterson et al., for example, compared propofol and midazolam as sedative agents for outpatient endoscopy, and found that significant oxygen desaturation (S\textsubscript{PO\textsubscript{2}} \leq 90\%) occurred with both drugs.# Using sedation criteria similar to those in the current study, Church et al. described significant reductions in oxygen saturation (mean minimum of 88\%) in patients sedated with propofol for upper gastrointestinal endoscopy.2 Although these investigators did not evaluate the ventilatory response to hypoxia, their findings are consistent with ours: four of our eight subjects became hypoxic while breathing room air during propofol infusion. The fact that this resolved when we aroused the subjects indicates that the hypoxia resulted from hypventilation, rather than from a persistent propofol-induced gas exchange abnormality.

Several investigators, on the other hand, have suggested that respiratory depression does not occur with propofol sedation. However, methodologic problems may limit the validity of their conclusions. For example, in patients undergoing molar extractions with local anesthesia and propofol sedation, Valtonen et al. described no significant perioperative decreases in arterial oxygen saturation, but failed to indicate whether or not patients received supplemental O\textsubscript{2}.1 Also, two separate studies of patients sedated with propofol during spinal anesthesia concluded that subanesthetic doses of propofol had no respiratory depressant effects.3,11 However, in neither of the studies was S\textsubscript{PO\textsubscript{2}} monitored; in fact, "respiratory depression" was simply defined as cough, airway obstruction, or apnea.

Decreases in V\textsubscript{E}90 and TV90 indicate that, in addition to its effect on the slope, propofol sedation causes a downward displacement of the hypoxic response curve. However, because the current study was performed during isohypercapnic conditions, the effect of propofol on V\textsubscript{E}90 and TV90 probably represent depression of a combination of hypoxic and hypercarbic ventilatory control. In studies of hypoxic ventilatory response, one cannot completely eliminate the contribution of hypercarbic ventilatory response, because elimination of the CO\textsubscript{2} drive causes apnea in sedated subjects,12 making ventilatory measurements impossible.

Although hypoxic and hypercarbic drives act synergistically, the design of the current study does not allow determination of the relative contribution of each mechanism to the decreases in V\textsubscript{E}90 and TV90. Previous investigations indicate concomitant depression of hypercarbic ventilatory response by propofol. For example, we recently found that, after an induction dose of propofol (2.5 mg/kg), significant depression of the slope of the ventilatory response to CO\textsubscript{2} persists for 20 min, although subjects were awake and oriented by the end of that time.13 However, based on the short duration of hypoxic exposure, one could speculate that our findings resulted primarily from depression of the peripheral chemoreceptors, rather than from central ventilatory control mechanisms.

In the current study, subjects' levels of consciousness remained stable throughout the "propofol" hypoxic response determination. Consistent with this observation was the absence of a significant difference in plasma propofol concentrations measured immediately before and after the "propofol" hypoxic response determinations. Furthermore, our subjects' plasma propofol levels (about 2.2 \mu g/ml) were similar to those previously reported to provide a level of sedation similar to that of the current study. Beller et al., for example, measured mean blood propofol concentration of 2.9 \mu g/ml in 14 intensive care patients sedated with propofol infusions.14 Likewise, using a pharmacokinetic model in patients undergoing upper GI endoscopy, Church et al. predicted that a blood propofol concentration of 2.5 \mu g/ml was necessary for endoscope insertion.2

Our ability to maintain a narrow range of PET\textsubscript{CO\textsubscript{2}} during HVR determinations is reflected in the small standard deviations of measured PET\textsubscript{CO\textsubscript{2}}. Nonetheless, there was a positive correlation between PET\textsubscript{CO\textsubscript{2}} and S\textsubscript{PO\textsubscript{2}} when HVR was measured during propofol infusion. The magnitude of this effect was such that PET\textsubscript{CO\textsubscript{2}} decreased by approximately 1.4 mmHg as S\textsubscript{PO\textsubscript{2}} decreased from 100 to 70\%. As shown in figure 2, this appears to have been related to a modest increase in normoxic PET\textsubscript{CO\textsubscript{2}} during propofol infusion; thus, even with F\textsubscript{CO\textsubscript{2}} = 0, we were unable to achieve the target CO\textsubscript{2} tension until ventilation was stimulated by hypoxia.

While this effect may have artificially decreased the measured slope of the ventilatory response during propofol, it is unlikely that this affected the validity of our findings for the following reasons. First, the observed changes in V\textsubscript{E}90 during the "propofol" HVR determinations did not result from the gradual decline in PET\textsubscript{CO\textsubscript{2}} because of the slight elevation of PET\textsubscript{CO\textsubscript{2}} at normoxia, the mean PET\textsubscript{CO\textsubscript{2}} at S\textsubscript{PO\textsubscript{2}} = 90\% was actually

higher during “propofol” determinations than during pre- or postpropofol determinations. Second, the magnitude of the change in PETCO2 was insufficient to significantly affect the hypoxic ventilatory response slopes measured during propofol infusion. Belleville et al.15 found that, during hypoxia, the total “gain” of the hypercarbic ventilatory control mechanism is approximately 31·min⁻¹·mmHg⁻¹. Thus, even with complete equilibration, a 1.4 mmHg change in PETCO2 as SO2 decreased from 100 to 70% would be expected to decrease our measurement of V̇e at SO2 = 70% by a maximum of 4.2 l/min. The maximum decrease in slope that can be accounted for by this mechanism, (4.2/30) = 0.14 l·min⁻¹·%SO2⁻¹, accounts for only 20% of the 0.70 l·min⁻¹·mmHg⁻¹ decrease in HVR slope that we observed during propofol infusion. Even when the null hypothesis is altered to take this potential bias into account, the change in slope remains highly significant (P < 0.005).

In conclusion, we found that, under the conditions of this study, conscious sedation with a propofol infusion is associated with profound depression of the hypoxic ventilatory response, as measured during iso-hypercarbia. When combined with the known effect of propofol on the hypercarbic ventilatory response, this may further predispose patients to hypoxia during propofol sedation. These findings underscore the importance of appropriate monitoring and the ability to provide airway support when propofol is used for conscious sedation.

References

