Correspondence

Concentration Ranges in Dose–Response Determinations for Propofol and Thiopental In Vitro

To the Editor:—Recently, Park et al. noted the absence of contractile response by rat aortic and pulmonary arterial rings exposed to concentrations of propofol ranging from 30 to 300 μM. Their work revealed a statistically significant concentration-dependent relaxation response. Introna et al. have reported that lower propofol concentrations cause an endothelium-independent constriction of canine coronary artery rings across a range of 10^{-4} M (10 nM) to 10^{-3} M (10 μM), the latter concentration approaching the initial concentration used by Park et al. to establish a propofol dose-response curve.

In addition, Park et al. did not observe significant effects of thiopental upon aortic tissues within a concentration range of 10–100 μM. We have noted a biphasic response to thiopental in endothelium-denuded canine coronary artery rings, both untreated (bridges et al.,) and pretreated with serotonin. Thiopeental concentrations of 100 nM–100 μM caused ring contraction, and ring relaxation was seen at higher concentrations. Our observations were similar to those of Hanano and colleagues, who demonstrated increased contractile responses in a variety of canine arteries using thiopental concentrations ranging from 10 μM to 1 mM. Multiple variables affect the in vitro milieu, including physiochemical properties such as protein binding, lipid solubility, and pKa, as well as the pharmacokinetic profile of the drug. This makes it difficult to correlate in vivo with in vitro studies, as well as to infer specific tissue drug levels across a relatively narrow concentration range. Clinically relevant concentrations of thiopental have been estimated at 40–350 μM, and those of propofol at 16–22 μM (maintenance infusion) and >35 μM (bolus). The study by Park et al. approximated this range (10–100 μM thiopental and 30–300 μM propofol). However, we have observed a biphasic response in coronary rings across a wider concentration range of thiopental (100 nM–1 mM), and Introna and colleagues have demonstrated a contractile response at propofol levels of 10 μM up to 10 μM, with relaxation at higher doses. It is possible that vasodilation might follow a bolus dose of propofol, with vasoconstriction occurring at lower concentrations (i.e., maintenance blood levels).

These studies contain differences in animal species, vascular tissue type, and experimental technique. Still, we maintain that important effects of these two drugs, such as the biphasic contraction/relaxation response we have observed, may be overlooked if one is limited to a relatively narrow concentration range. It would seem prudent to expand the dose range to include both higher and lower concentrations, considering the difficulty of extrapolating from in vitro to in vivo and from animal to human tissue and considering the pharmacokinetic and physiochemical complexities involved.

M. Trueutt Bridges, Jr., M.D.
Resident in Anesthesiology

Robert P. S. Introna, M.D.
Associate Professor of Anesthesiology

Jack K. Pruitt, Ph.D.
Professor of Anesthesiology
Department of Anesthesiology
Medical College of Georgia
Augusta, Georgia 30912

References

2. Introna RPS, Pruitt JK, Yodkowski EH, Grover E: Direct effects of propofol (2,6-disopropylphenol) on canine coronary artery ring tension. Gen Pharmacol (in press)

(Accepted for publication March 2, 1993.)

Anesthesiology, V 78, No 6, Jun 1993