A Simple Technique for Placement of the Univent Bronchial Blocker

To the Editor—The Univent tube (Vizaid, Lewiston, NY) was first described by Inoue et al.1 In 1982 and has been used in our institution for almost 5 years. The Univent tube has been described for use in aortic aneurysm repair,2 bronchopleural fistula surgery,3 lung transplantation,4 and a variety of other procedures requiring one-lung ventilation.5

I recently encountered difficulty in placement of the bronchial blocker of a 8.5-mm inner diameter Univent tube in the left mainstem bronchus of a male patient with left pneumonectomy. Our usual procedure with the Univent tube is to intubate the trachea as with a single-lumen tube and guide the blocker into place using a twisting motion on the blocker shaft while pushing the blocker into the target mainstem bronchus under direct vision with a fiberoptic bronchoscope. In this case, the angle of takeoff of the mainstem bronchus was greater than the degree of rotation we could put on the Univent bronchial blocker, and the blocker repeatedly entered the right mainstem bronchus.

Other maneuvers were tried unsuccessfully: (1) rotation of the tube assembly toward the operative side ("tube rotation method" in package insert) and (2) bronchial intubation using the fiberoptic bronchoscope as stylet. The outer diameter of this size of Univent tube may have been too large to easily approach the carina.

I finally overcame this inability of the blocker to negotiate the left bronchus by partially deflating the tracheal tube cuff of the Univent tube and turning the patient's head to the operative (left) side. This had the effect of "pointing" the blocker directly at the left mainstem bronchus. The bronchus was then easily cannulated.

D. John Doyle, M.D., Ph.D., F.R.C.P.C.
Department of Anaesthesia
The Toronto Hospital (General Division)
200 Elizabeth Street
Toronto, Ontario, Canada, M5G-2C4

References

(Accepted for publication April 25, 1993.)

Needleless Intravenous Administration System

To the Editor—Despite the Occupational Safety and Health Administration recommendations against the recappping of needles, until recently most members of our anesthesia department, both Certified Registered Nurse Anesthetists and physicians, have used needle-tipped syringes to inject into the In-Line injection ports of intravenous tubing. The tendency then was to recap rather than have unprotected needles on the anesthesia cart. I developed a way to inject safely into any port of intravenous tubing, which allows flexibility in choice of primary injection site.

My system consists of a Baxter Needle-Lock device (NLD; Baxter Healthcare Corporation, Santa Ana, CA) plus a three-way luer lock stopcock attached to the infusion port of the NLD (fig. 1). The NLD is an 18-G needle with a permanent protective collar that prevents needle-stick injury. The collar has a longitudinal slot with an intersecting partially circumferential slot. The slots allow the NLD to be

Anesthesiology, V 79, No 2, Aug 1993

Fig. 1. Components of the administration system. The Needle-Lock device portion is properly attached to the intravenous tubing.

Needleless Intravenous Administration System

To the Editor—Despite the Occupational Safety and Health Administration recommendations against the recappping of needles, until recently most members of our anesthesia department, both Certified Registered Nurse Anesthetists and physicians, have used needle-tipped syringes to inject into the In-Line injection ports of intravenous tubing. The tendency then was to recap rather than have unprotected needles on the anesthesia cart. I developed a way to inject safely into any port of intravenous tubing, which allows flexibility in choice of primary injection site.

My system consists of a Baxter Needle-Lock device (NLD; Baxter Healthcare Corporation, Santa Ana, CA) plus a three-way luer lock stopcock attached to the infusion port of the NLD (fig. 1). The NLD is an 18-G needle with a permanent protective collar that prevents needle-stick injury. The collar has a longitudinal slot with an intersecting partially circumferential slot. The slots allow the NLD to be

Anesthesiology, V 79, No 2, Aug 1993

Fig. 1. Components of the administration system. The Needle-Lock device portion is properly attached to the intravenous tubing.