The Effect of Sensor Malpositioning on Pulse Oximeter Accuracy during Hypoxemia

Steven J. Barker, Ph.D., M.D.,* John Hyatt, B.S.,† Nitin K. Shah, M.D.,‡ Y. James Kao, Ph.D., M.D.§

Background: Previous studies have shown that pulse oximeters whose sensors are positioned improperly may yield erroneously low saturation (\(S_{aO_2}\)) values on normoxemic subjects. The behavior of oximeters with malpositioned sensors during hypoxemia has not been studied. The current study is aimed at determining the behavior of several different pulse oximeters over a wide range of arterial oxygen saturation (\(S_{aO_2}\)).

Methods: In each of 12 healthy volunteers, a radial artery cannula was inserted, and eight different pulse oximeters, five of which had malpositioned sensors, were applied. Subjects breathed controlled mixtures of nitrogen and oxygen to slowly vary their \(S_{aO_2}\) from 100% to 70%. Arterial blood samples were analyzed and pulse oximeter data were recorded at five stable \(S_{aO_2}\) values for each subject.

Results: The oximeters with malpositioned sensors vary greatly in their behavior, depending on both the actual \(S_{aO_2}\) and the manufacturer and model. One oximeter underestimated saturation at all \(S_{aO_2}\) values, while three others underestimated at high \(S_{aO_2}\) and overestimated at low \(S_{aO_2}\). Linear regression analysis shows a decrease in the slope of \(S_{pO_2}\) versus \(S_{aO_2}\) in most cases, indicating a loss of sensitivity to \(S_{aO_2}\) changes. Between-subject variation in response curves was significant.

Conclusions: The calibration curves of the pulse oximeters studied were changed greatly by sensor malpositioning. At low \(S_{aO_2}\) values, these changes could cause the oximeter to indicate that a patient was only mildly hypoxemic when, in fact, hypoxemia was profound. It is recommended that sensor position be checked frequently and that inaccessible sensor locations be avoided whenever possible. (Key words: Measurement techniques, pulse oximetry: accuracy. Monitoring: hemoglobin oxygen saturation.)

Several sources of pulse oximeter error have been identified in the recent literature. Pulse oximeter saturation (\(S_{pO_2}\)) values that do not accurately reflect arterial oxygen saturation (\(S_{aO_2}\)) can result from motion artifact, ambient light interference, dyshemoglobinemia, intravenous dyes, venous blood pulsations, and nail polish. In a recent volunteer study, Kelleher and Ruff found that one pulse oximeter (Nellcor N-100, Hayward, CA) yielded erroneously low \(S_{pO_2}\) values in normoxemic subjects when the clip-on finger sensor was intentionally malpositioned. As the sensor was gradually withdrawn from the end of the digit, the displayed \(S_{pO_2}\) decreased to values between 86% and 95% before the pulse oximeter entered its loss-of-signal alarm mode. The range of sensor positions producing this "penumbra effect" was found to be 1–5 mm in length in most subjects. The authors concluded that this sensor malpositioning effect should be suspected whenever a pulse oximeter displays a "mild degree of desaturation."

Although this study demonstrated the existence of the penumbra effect, it leaves two important questions unanswered. (1) How does a pulse oximeter with malpositioned sensor behave when the patient is actually hypoxemic? (2) How does the penumbra effect vary among the numerous pulse oximeters in clinical use? The first question is clinically relevant, because a proposed explanation of the penumbra effect implies that \(S_{pO_2}\) would be forced toward 85% for any \(S_{aO_2}\) value. That is, for actual saturation greater than 85%, the pulse oximeter would underestimate saturation, but for \(S_{aO_2}\) less than 85%, it would overestimate it. The latter situation is particularly dangerous; the \(S_{pO_2}\) value would imply that a patient was only mildly hypoxemic when, in fact, profound hypoxemia was present. This "optical shunt" hypothesis implies a behavior similar to that observed in methemoglobinemia, in which the pulse oximeter loses much of its sensitivity to changes in saturation.

The question of variability among oximeters is also important because each manufacturer uses a different algorithm for noise rejection. The penumbra effect occurs at a low signal-to-noise ratio; thus, the \(S_{pO_2}\) error could be a function of the low signal-to-noise performance of the instrument.
The current study aimed at determining the behavior of several pulse oximeters whose sensors were intentionally malpositioned on healthy volunteers in whom a wide range of SaO₂ values were generated. Both earlobe and digit sensors were employed, since both locations are subject to the penumbra effect. For the purpose of this study, a malpositioned sensor is one in which the light source and detector remain properly aligned with one another, but the light pathways between the two do not all fall within tissue.

Materials and Methods

This volunteer study was approved by the University Human Subjects Review Committee, and informed consent was obtained from each subject. The 12 subjects ranged in age from 25 to 41 yr. All were in good health; nine were white; three were black; and one was a cigarette smoker (also black). A 20-G cannula was inserted in the radial artery of the nondominant hand of each subject, for obtaining arterial blood specimens. All specimens were analyzed for arterial pH, arterial carbon dioxide tension, and arterial oxygen tension by a Nova model Stat-3 blood gas analyzer (Waltham, MA). Hemoglobin concentrations, including total hemoglobin (Hb), oxyhemoglobin (O₂Hb%), carboxyhemoglobin (COHb%), and methemoglobin (MetHb%), were determined in each sample by a Radiometer model OSM-3 co-oximeter (Copenhagen, Denmark). Both instruments were calibrated daily as recommended by the manufacturers.

All subjects were monitored by continuous electrocardiogram, automated noninvasive blood pressure, mass spectrometer respired gas analyzer (Ohmeda model 6000, Boulder, CO), and a processed electroencephalogram (Lifescan, Diatek, San Diego, CA). In addition, each subject was monitored by eight different pulse oximeters, whose manufacturers, model numbers, and sensor locations are given in table 1. Three of the eight pulse oximeter sensors were positioned normally and used as controls; the remaining five were malpositioned. The Nellcor N-200 was selected as a control because it exhibits a very short penumbra, which makes it difficult to malposition in a repeatable fashion. The other two controls were both reflectance pulse oximeters, which are not subject to the penumbra effect.

The malpositioned sensors were placed as follows. While the subject breathed room air, the sensor was withdrawn from the finger or earlobe in 1-mm steps until no SaO₂ value was displayed. The most distal sensor position at which the correct heart rate (±5%) was determined reliably by the oximeter with no error messages displayed was used as the study location. Each sensor was carefully taped in place to minimize the risk of additional movement. Subjects were instructed to remain as motionless as possible once the sensor locations were fixed.

After all sensors were positioned, room air data were recorded for 10 min to ensure that the SaO₂ and heart rate values measured by all pulse oximeters were repeatable. Arterial blood samples were obtained and analyzed near the beginning and end of this baseline period to ensure stable physiologic conditions. Subjects were then instructed to breathe normally through an anesthesia circle system while the FIO₂ value was adjusted downward stepwise. The FIO₂ was controlled by a variable mixture of nitrogen and oxygen, with a total fresh gas flow rate of 6 l/min. Each FIO₂ value was maintained for 4 min after obtaining a stable inspired gas mixture, as indicated by the mass spectrometer. Two arterial blood specimens were obtained during the final 2 min at each FIO₂ and analyzed by co-oximeter and blood-gas analyzer. Pulse oximeter data (SaO₂ and heart rate) were recorded every minute during the entire experiment.

Four FIO₂ values less than 21% were used for each subject. The lowest FIO₂ of approximately 10% was chosen to yield an SaO₂ value of 70–74%. The subject was instructed to remove the breathing circuit mouthpiece if he experienced any unpleasant symptoms during the hypoxicemic protocol, and verbal contact was
maintained at all times. The protocol was abandoned immediately if the subject did not respond appropriately to questions. After the lowest FIO2 value, the subject breathed 100% O2 for 10 min while a final set of data and blood gases were recorded.

Standard statistical methods for analyzing "methods comparison" data were used. The SpO2 values from each malpositioned pulse oximeter were plotted against simultaneous values from either of two "gold standards," namely, Sato from the in vitro co-oximeter or SpO2 from a control pulse oximeter with properly positioned sensor. For each such comparison, we calculate the mean and standard deviation of the differences between the two methods, as recommended by Altman and Bland.10 The mean difference, or "bias," represents systematic error or tendency of the pulse oximeter to consistently
overestimate or underestimate saturation. The standard deviation of the difference, or “imprecision,” represents random error or lack of repeatability of the measurement. In addition, we calculate a linear regression for each comparison (slope, intercept, and SE of the estimate) and a correlation coefficient. Both pooled data and single-subject data were analyzed in this way to determine the degree of intersubject variability.

Results

One subject, the only smoker in the study, became lethargic at an S_{O_2} of 95% (O$_2$Hb% = 91%, COHb% = 4.2%, MetHb% = 1.0%) and did not complete the protocol. The remaining 11 subjects completed the protocol without unpleasant symptoms; all reached minimum S_{O_2} values of 70–74%. The three control pulse oximeters (Nellcor N-200 finger, Ciba-100 finger, Ciba-100 forehead, Medfield, MA) each yielded $S_{P_0_2}$ values that agreed with co-oximeter S_{O_2} values to within manufacturers’ specifications. The Nellcor N-200 was the most accurate of the controls, yielding values for bias ± imprecision of $-0.65 ± 1.84$, $R = 0.98$, from the 12 subjects’ pooled data ($n = 93$).

Nellcor specifies an uncertainty (SD) of ±2% for S_{O_2} values greater than 80%, which corresponds to an imprecision of 2%.

Figure 1A shows multiple subject $S_{P_0_2}$ values for the malpositioned Nellcor N-100 (finger) plotted versus simultaneous S_{O_2} values of a control pulse oximeter (N-200). Figure 1B is a corresponding plot for the malpositioned Ohmeda 3700 (earlobe), and figure 1C shows data using the Criticare 504 (earlobe; Milwaukee, WI). Each plot shows a line of identity (dashed) and a linear regression best-fit line (solid). Though all three pulse oximeters with malpositioned sensors show large random error, they exhibit strikingly different behavior otherwise. The Ohmeda 3700 consistently underestimates S_{O_2}, whereas the Nellcor N-100 and Criticare 504 tend to underestimate S_{O_2} at high saturation values and overestimate it at low values. Plots of malpositioned $S_{P_0_2}$ values versus co-oximeter S_{O_2} values show the same trends but with fewer data points. For example, figure 1A contains 244 data points; the corresponding plot using S_{O_2} as the abscissa contains 73 data points.

Table 2 shows methods comparison statistics for $S_{P_0_2}$ from the five oximeters with malpositioned sensors versus both control S_{O_2} and co-oximeter S_{O_2}. The ta-

Table 2. Method Comparison Statistics for Malpositioned Sensor Pulse Oximeter $S_{P_0_2}$ Values Compared with (1) In Vitro Co-Oximeter S_{O_2} Values and (2) Control Pulse Oximeter (N-200, Finger) S_{O_2} Values, Pooled Data for 12 Subjects

<table>
<thead>
<tr>
<th>Oximeter</th>
<th>Bias (mean error)</th>
<th>Imprecision (SD of error)</th>
<th>R</th>
<th>Slope ± SE</th>
<th>Intercept ± SE</th>
<th>SE of Estimate</th>
<th>No. of Pooled Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticare 504 (earlobe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>-0.90</td>
<td>10.95</td>
<td>0.328</td>
<td>$0.315 ± 0.030$</td>
<td>$59.8 ± 23.8$</td>
<td>8.75</td>
<td>96</td>
</tr>
<tr>
<td>(2)</td>
<td>-2.14</td>
<td>9.85</td>
<td>0.450</td>
<td>$0.44 ± 0.028$</td>
<td>$48.3 ± 24.0$</td>
<td>8.26</td>
<td>301</td>
</tr>
<tr>
<td>Nellcor N-100 (digit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>-2.14</td>
<td>13.7</td>
<td>0.326</td>
<td>$0.489 ± 0.044$</td>
<td>$43.3 ± 35.3$</td>
<td>12.9</td>
<td>73</td>
</tr>
<tr>
<td>(2)</td>
<td>-1.28</td>
<td>15.7</td>
<td>0.171</td>
<td>$0.27 ± 0.048$</td>
<td>$64.5 ± 35.5$</td>
<td>14.2</td>
<td>244</td>
</tr>
<tr>
<td>Novametrix 500 (earlobe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>4.93</td>
<td>6.06</td>
<td>0.781</td>
<td>$0.882 ± 0.016$</td>
<td>$41.9 ± 12.4$</td>
<td>4.56</td>
<td>73</td>
</tr>
<tr>
<td>(2)</td>
<td>4.24</td>
<td>4.17</td>
<td>0.924</td>
<td>$0.88 ± 0.009$</td>
<td>$33.0 ± 12.5$</td>
<td>2.74</td>
<td>211</td>
</tr>
<tr>
<td>Ohmeda 3700 (earlobe)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>-10.2</td>
<td>12.1</td>
<td>0.730</td>
<td>$0.850 ± 0.042$</td>
<td>$3.05 ± 33.6$</td>
<td>12.3</td>
<td>91</td>
</tr>
<tr>
<td>(2)</td>
<td>-11.5</td>
<td>8.53</td>
<td>0.781</td>
<td>$1.12 ± 0.028$</td>
<td>$-22.0 ± 33.9$</td>
<td>8.46</td>
<td>304</td>
</tr>
<tr>
<td>Ohmeda 3740 (digit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>0.49</td>
<td>6.10</td>
<td>0.783</td>
<td>$0.605 ± 0.016$</td>
<td>$35.4 ± 13.0$</td>
<td>7.8</td>
<td>81</td>
</tr>
<tr>
<td>(2)</td>
<td>0.17</td>
<td>4.05</td>
<td>0.892</td>
<td>$0.73 ± 0.011$</td>
<td>$24.1 ± 13.1$</td>
<td>3.28</td>
<td>226</td>
</tr>
<tr>
<td>Nellcor N-200 (1) (digit)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>-0.65</td>
<td>1.84</td>
<td>0.980</td>
<td>$1.050 ± .002$</td>
<td>$-5.42 ± 0.12$</td>
<td>1.84</td>
<td>93</td>
</tr>
</tbody>
</table>

Anesthesiology, V 79, No 2, Aug 1993
ble includes values of bias, imprecision, correlation, linear regression slope and intercept (with uncertainties), and standard error of the estimate (SEE). With the exception of the Ohmeda 3700 (earlobe), all malpositioned sensors exhibit a regression slope much less than unity and a large positive y-intercept. This indicates decreased sensitivity to changes in \(\text{SaO}_2 \), also shown in figures 1–3. On the other hand, the Ohmeda 3700 (fig. 1B) has a linear regression slope greater than unity and a negative y-intercept. This oximeter shows increased sensitivity to \(\text{SaO}_2 \) changes, but consistently underestimates \(\text{SaO}_2 \) as shown by the large negative bias.

The effects of sensor malpositioning are clarified further by single-subject data. Figure 2 shows a portion of the data from the Ohmeda 3700 (earlobe), distinguishing the data for two of the 12 subjects. Two separate linear regressions are shown, along with corresponding statistics. The single-subject data fall much closer to their linear regression lines than do the pooled data, as evidenced by the smaller SEE values (table 2). Figure 3 shows data from three different pulse oximeters with malpositioned sensors on one subject, illustrating the wide range of \(\text{SpO}_2 \) values that can be displayed simultaneously, particularly at low saturations.

Discussion

In the original paper describing the penumbra effect, a pulse oximeter with malpositioned sensor was shown to yield falsely low \(\text{SpO}_2 \) values in normoxemic subjects. In the current study, we found that sensor malpositioning actually changes the entire calibration curve of the pulse oximeter. Different pulse oximeters are affected in markedly different ways, as seen in figure 1. Four of the five malpositioned oximeters yielded significant decreases in linear regression slope accompanied by large y-intercepts (table 2). This implies that, though these instruments may underestimate saturation at high \(\text{SaO}_2 \) values, they will overestimate it at lower values. For example, the Nellcor N-100 yielded \(\text{SpO}_2 \) values as high as 92% when the actual \(\text{SaO}_2 \) was less than 70%.
MALPOSITIONED SpO_2 SENSORS DURING HYPOXEMIA

The pooled data of figure 1 exhibit much random variability, as shown by the large values of imprecision and SEE (table 2). However, the single subject data of figure 2 provide a much "tighter" fit to the corresponding linear regressions, shown by smaller SEE values and larger R values. Much of the random variability of figure 1 is thus between-subject rather than within-subject variability. As shown in figure 3, for a given subject we may find pulse oximeters with malpositioned sensors whose SpO_2 values are either too high or too low during hypoxemia. Linear regression lines such as that of the Nellcor N-100 in figure 3 are most concerning. The small slope of this regression (0.34) indicates a significant loss of sensitivity to SaO_2 changes. That is, the oximeter not only yields large errors but may fail to follow trends in saturation.

This loss of sensitivity to SaO_2 changes is similar to that encountered in a previous laboratory study of the effects of methemoglobinemia on pulse oximetry. A possible explanation proposed in that paper regards the effect of signal-to-noise ratio on the pulse oximeter’s calculation of SpO_2. The pulse oximeter computes the ratio of the fluctuating (AC) absorbance to the mean (DC) absorbance at each of the two light wavelengths, 660 and 940 nm. It then calculates the ratio R of these two intensity ratios: $R = (\text{AC}_{660}/\text{DC}_{660})/(\text{AC}_{940}/\text{DC}_{940})$. The value of SpO_2 for a given value of R is found in a "look up" table stored in the pulse oximeter software. The addition of large amounts of "noise" to both the numerator and denominator of R will tend to drive this ratio toward unity. An R value of 1.0 corresponds to an SpO_2 value near 85%. Thus, a poor signal-to-noise ratio could force SpO_2 toward 85% and blunt the response to SaO_2 changes. This type of behavior is seen in figures 1A and 1C, and in one of the curves in each of figures 2 and 3. This possible mechanism does not explain the Ohmeda 3700 behavior seen in figure 1B and in the single-subject curves of figures 2 and 3. The O-3700 may handle low signal-to-noise conditions differently than the other models tested.

We have used both tape-on (disposable) and clip-on (nondisposable) pulse oximeter sensors in this study. Tape-on sensors are subject to two different types of malpositioning: (1) sensor positioning such that light pathways do not all pass through tissue, and (2) misalignment of the light source and detector. The first type was the subject of the present study and of the previous study of Kelleher and Ruff. The second type of malpositioning was avoided by maintaining good visual alignment of the source and detector in the tape-on sensors. Sensor misalignment can cause loss of signal (no displayed SpO_2 value), but erroneous SpO_2 values caused by misalignment have not been reported.

Pulse oximetry may be the most important advance in intraoperative monitoring of the past 30 yr. However, like any device, it has limitations and sources of error. It is well known that dyshemoglobins, intravenous dyes, venous pulsations, and nail polish can produce large SpO_2 errors even when the displayed pulse rate is accurate. We now must add sensor malpositioning to the list of sources of SpO_2 error in the presence of an accurate pulse rate. This error is particularly important in that it can occur in any patient during any procedure, and if the sensor is not visible to the user, there may be no other evidence of malpositioning. Furthermore, a malpositioned sensor may produce SpO_2 values that are falsely low, falsely high, or correct, depending on the instrument, the patient, and the actual hemoglobin saturation. The tendency of some oximeters to produce falsely high SpO_2 values at low saturations (fig. 1) is especially disturbing. This could lead the clinician to believe that a patient was only mildly hypoxic when, in fact, he was severely hypoxic. It is not our purpose here to show that some pulse oximeters are "better" than others in their penumbra response. We have tested only a few models and only one sensor and software version for each model. We have demonstrated that different instruments show a wide variety of responses, so that the behavior of one model cannot be expected to apply to another, even from the same manufacturer.

The clinical consequences of this study are straightforward. The most effective way to guard against penumbra effect errors is to keep the oximeter sensor visible at all times. During procedures in which both arms must be tucked in at the patient's side, one should consider using an earlobe sensor or other facial sensor. Nasal bridge and forehead sensors are available, and other sites such as the buccal region, nasal septum or alae, and even the tongue are under investigation. If a digit on an inaccessible hand or foot must be used, tape-on sensors may provide more security than clip-on sensors. Finally, the clinician should maintain a high index of suspicion. If the SpO_2 value is displayed intermittently or if the displayed pulse rate is not always correct, the sensor position should be checked immediately. We also recommend rechecking sensor position after any movement or repositioning of the pa-

Anesthesiology, V 79, No 2, Aug 1993
Patient, movement of the anesthesia machine, or placement of surgical drapes.

References