Amrinone Enhances Myocardial Contractility and Improves Left Ventricular Diastolic Function in Conscious and Anesthetized Chronically Instrumented Dogs

Paul S. Pagel, M.D.,* Douglas A. Hettrick, M.S.,† David C. Wartier, M.D., Ph.D.‡

Background: Volatile anesthetics depress left ventricular mechanical performance in vivo by altering intracellular calcium regulation. Although amrinone has been shown to reverse the negative inotropic effects of volatile anesthetics, the actions of amrinone on anesthetic-induced diastolic dysfunction are unknown. This investigation examined and compared the direct effects of amrinone on left ventricular systolic and diastolic function in conscious and anesthetized dogs.

Methods: Experiments were conducted in the presence of pharmacologic blockade of the autonomic nervous system, because autonomic activity may influence the hemodynamic actions of volatile anesthetics and amrinone in vivo. Three groups, comprising a total of 27 experiments, were conducted using 9 dogs chronically instrumented for measurement of aortic and left ventricular pressure, left ventricular dP/dt, subendocardial segment length, diastolic coronary blood flow velocity, and cardiac output. Myocardial contractility was evaluated using the preload recruitable stroke work relationship slope (Mw). Diastolic function was characterized by a time constant of isovolumic relaxation (τ), a regional chamber stiffness constant (Ke), and maximum segment lengthening velocity during rapid ventricular filling (dL/dtmax). On three separate days, an amrinone bolus of 1 mg/kg, followed by an infusion at 10, 20, 40, or 80 μg·kg⁻¹·min⁻¹, was administered. Hemodynamics and ventricular pressure-segment length loops and waveforms were recorded after a 15-min equilibration at each dose in the conscious state or during isoflurane or halothane anesthesia (1.25 MAC).

Results: In conscious dogs, amrinone significantly increased myocardial contractility in a dose-dependent manner (Mw of 65 ± 8 to 108 ± 10 mmHg at the high dose). Amrinone also shortened isovolumic relaxation (τ of 3.27 ± 2.1 to 24.8 ± 0.9 ms at the high dose) and enhanced rapid ventricular filling (dL/dtmax of 34.8 ± 1.2 to 45.1 ± 2.3 mm/s at the high dose) in a dose-related fashion. In addition, amrinone reduced regional chamber stiffness (Ke of 0.49 ± 0.09 to 0.31 ± 0.08 mm/s at the high dose) in conscious dogs. Amrinone also enhanced left ventricular systolic function (increase in Mw) and diastolic function (decreases in τ and Ke) and increases in dL/dtmax when this drug was administered to dogs anesthetized with isoflurane or halothane.

Conclusions: Amrinone produced positive inotropic and lusitropic effects in both conscious and anesthetized dogs with autonomic nervous system blockade. These results indicate that amrinone-induced improvement of left ventricular performance are related to actions in diastole, as well as systole.

(Key words: Anesthetics, volatile; halothane; isoflurane. Heart, diastole; diastolic left ventricular function; isovolumic relaxation; ventricular compliance. Heart, myocardial performance; left ventricular function; myocardial contractility; preload recruitable stroke work. Pharmacology, inotropic agents: amrinone.)

* Fellow, Department of Anesthesiology.
† Biomedical Engineer, Department of Anesthesiology.
‡ Professor of Anesthesiology, Pharmacology, and Medicine (Division of Cardiology); and Vice Chairman for Research, Department of Anesthesiology.

Received from the Departments of Anesthesiology, Pharmacology, and Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin; and the Zablocki Veterans Administration Medical Center, Milwaukee, Wisconsin. Accepted for publication June 6, 1993. Supported by US PHS grant HL 32911, Anesthesiology Research Training Grant GM 08377, and VA Medical Research Funds.

Address reprint requests to Dr. Wartier: Medical College of Wisconsin, MFRC, Room A1000, 8701 West Watertown Plank Road, Milwaukee, Wisconsin 53226.

Anesthesiology, V 79, No 4, Oct 1993
tropic effects of potent inhalational anesthetics in vitro11,12 and in vivo.13-16

Volatile anesthetics, including isoflurane and halothane, depress myocardial contractility to varying degrees17-19 by interfering with normal intracellular Ca2+ regulation through a variety of mechanisms,20 including partial inhibition of voltage-dependent Ca2+ channels in the sarclemmal membrane,21-25 disruption of Ca2+ storage and mobilization functions of the sarcoplasmic reticulum;26-29 and alteration of contractile protein affinity for, and responsiveness to, activator Ca2+.28-31 Isoflurane and halothane also affect left ventricular function during diastole, producing dose-related prolongation of isovolumic relaxation32-34 and decreases in rapid ventricular filling.35 In addition, halothane may contribute to decreases in ventricular chamber compliance, although this action remains controversial.32,35-37 Amrinone improves volatile anesthetic-induced depression of systolic myocardial dysfunction, but the effects of amrinone on diastolic dysfunction produced by potent inhalational agents are uncharacterized.

The current investigation examined and compared the effects of multiple doses of amrinone, a clinically used PDE III inhibitor, on left ventricular systolic and diastolic function in the conscious and anesthetized chronically instrumented dog. Myocardial contractility was evaluated using the preload recruitable stroke work (PRSW) relationship, an easily quantified and relatively heart rate- and load-insensitive index of contractile state in canine myocardium in vivo.19,35,38 The PRSW relationship was determined from a series of left ventricular pressure-segment length loops generated by abrupt preload reduction. Ventricular function during various phases of diastole was determined using several indices: a time constant of isovolumic relaxation (\(\tau\)); the maximum segment lengthening velocity during rapid ventricular filling (dL/dt\textsubscript{max}); and a regional chamber stiffness constant (K\textsubscript{p}). Experiments were conducted in the presence of pharmacologic blockade of the autonomic nervous system, to avoid amrinone- and volatile anesthetic-induced alterations in systemic hemodynamics mediated \textit{via} intact autonomic nervous system function. Therefore, effects of amrinone on left ventricular systolic and diastolic function in conscious and anesthetized dogs were examined independent of autonomic nervous system reflexes.

Materials and Methods

All experimental procedures and protocols used in this investigation were reviewed and approved by the Animal Care Committee of the Medical College of Wisconsin. Furthermore, all conformed to the \textit{Guiding Principles in the Care and Use of Animals of the American Physiologic Society}, and were in accordance with the \textit{Guide for the Care and Use of Laboratory Animals}.§

General Preparation

Surgical implantation of instruments has been previously described in detail.19,32,35 Under general anesthesia and aseptic conditions, a left thoracotomy was performed and catheters were placed in the descending thoracic aorta and the right atrium for measurement of arterial pressure and drug administration, respectively. An ultrasonic flow probe (Transonic, Ithaca, NY) was positioned around the ascending thoracic aorta for measurement of cardiac output. A pair of ultrasonic segment length transducers (5 MHz) for measurement of changes in regional contractile function (percent segment shortening; \%SS) were implanted within the subendocardium of the anterior wall of the left ventricle. A high-fidelity micromanometer (P7; Konigsberg Instruments, Pasadena, CA) was positioned in the left ventricular apex for measurement of continuous left ventricular pressure and the maximum rate of increase of left ventricular pressure (dP/dt\textsubscript{max}). A catheter was inserted in the left atrial appendage, and the left ventricular micromanometer was cross calibrated in vivo against pressures measured \textit{via} arterial and left atrial catheters (Gould P\textsubscript{50} pressure transducer, Oxnard, CA). A single-port 16-G catheter was placed in the apex of the thoracic cavity between the left lung and chest wall through the thoracotomy incision for subsequent measurement of continuous intrathoracice pressure. A 1.5–2-cm segment of the proximal left anterior descending coronary artery was isolated, and a precalibrated Doppler ultrasonic flow transducer was placed around this vessel for determination of diastolic coronary blood flow velocity. A hydraulic vascular occluder (In Vivo Metric, Healdsburg, CA) was placed around the inferior vena cava for abrupt alteration of left ventricular preload. All instrumentation was secured, tunnelled between the scapulae, and exteriorized \textit{via} several small incisions. The pericardium was left widely open, the chest wall closed in layers, and the pneumothorax evacuated by a chest tube. Each dog was fitted with a

jacket (Alice King Chatham, Los Angeles, CA) to prevent damage to the instruments and catheters, which were housed in an aluminum box within the jacket pocket.

After surgery, each dog (N = 9) was treated with analgesics as needed (buprenorphine, 0.02 mg/kg). Antibiotic prophylaxis consisted of cephalothin (40 mg/kg) and gentamicin (4.5 mg/kg). Dogs were allowed to recover for a minimum of 7 days before experimentation and were trained to stand quietly in a sling during monitoring of hemodynamics. Segment length and coronary blood flow velocity signals were driven and monitored by ultrasonic amplifiers (Crystal Biotech, Hopkinton, MA). End-systolic segment length (ESL) was determined at maximum negative left ventricular dp/dt, and end-diastolic segment length (EDL) was determined just before the onset of left ventricular isovolumic contraction. The lengths were normalized according to the method described by Theroux et al.\(^{39}\) Percent segment shortening (\(\%\text{SS}\)) was calculated by use of the equation:
\[
\%\text{SS} = (\text{EDL} - \text{ESL}) \cdot 100 \cdot \text{EDL}^{-1}
\]
Relative diastolic coronary vascular resistance was calculated as the quotient of diastolic arterial pressure and diastolic coronary blood flow velocity (Hz \(\times 10^2\)). An estimate of myocardial oxygen consumption, the pressure-work index, was determined using a formula developed by Rooke and Feigl.\(^{40}\) All hemodynamic data were continuously recorded on a polygraph (model 7758A; Hewlett Packard, San Francisco, CA) and digitized via a computer interfaced with an analog-to-digital converter. Ventricular pressure and segment length data were also transmitted to a digital storage oscilloscope (model 4094; Nicolet, Madison, WI) for recording of left ventricular pressure-segment length waveforms and loops.

Experimental Protocol

All dogs (weighing 26.0 ± 0.8 kg, mean ± SEM) were assigned to receive amrinone in the conscious state or during isoflurane or halothane anesthesia in a random fashion on separate days. Dogs were fasted overnight, and fluid deficits were replaced before experimentation with crystalloid (500 ml 0.9% normal saline). Maintenance fluids were continued at 3 ml · kg\(^{-1} \cdot \text{h}^{-1}\) for the duration of each experiment. After instrumentation was calibrated and baseline hemodynamic data were recorded, the autonomic nervous system was pharmacologically blocked with intravenous propranolol (2 mg/kg), atropine methyl nitrate (3 mg/kg), and hexamethonium (20 mg/kg). Adequacy of autonomic blockade was demonstrated by lack of reflex changes in heart rate during an abrupt decrease in venous return via inflation of the inferior vena caval hydraulic occluder before and after completion of each experiment.

Continuous left ventricular pressure, intrathoracic pressure, and segment length waveforms were recorded on the digital oscilloscope for later off-line analysis of diastolic function. Left ventricular preload was altered to generate a series of left ventricular pressure-segment length loops used to evaluate myocardial contractility in the conscious and anesthetized states. The inferior vena cava was abruptly occluded to reduce left ventricular systolic pressure approximately 30 mmHg over 10–20 cardiac cycles. Respiratory variation in ventricular pressure in the conscious state was later eliminated off-line by electronic subtraction of the continuous intrathoracic pressure waveform from the left ventricular pressure waveform using the digital oscilloscope, as previously described.\(^{39}\) The resultant left ventricular pressure-segment length loops were used to evaluate myocardial contractility in the conscious state. No changes in heart rate were observed in response to occlusion of the inferior vena cava in any experiment. The occlusion of the inferior vena cava was released immediately after the left ventricular pressure-segment length loops were recorded.

In one group of experiments, amrinone was administered during the conscious state after hemodynamics and left ventricular pressure-segment length loops had been recorded. Continuous intravenous infusions of amrinone at 10, 20, 40, or 80 \(\mu\text{g} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}\) were administered in a random fashion immediately after an intravenous bolus of 1 mg/kg amrinone on the same experimental day. Hemodynamics were recorded and ventricular pressure-segment length waveforms and loops were obtained, using the techniques described above, after 15 min of equilibration at each dose of amrinone. The infusion rate of amrinone was then changed, and measurements were repeated after a similar period of equilibration.

In two other groups of experiments, amrinone was administered after each dog had been anesthetized with isoflurane or halothane. After inhalation induction and tracheal intubation, anesthesia was maintained with 1.25 MAC (end-tidal concentration) isoflurane or halothane in a nitrogen (79%) and oxygen (21%) mixture. The canine MAC values for isoflurane and halothane used in this investigation were 1.28% and 0.86%, respectively. End-tidal concentrations of isoflurane and halothane were measured using a mass spectrometer (Advantage 2000; Marquette, St. Louis, MO). The mass
spectrometer was calibrated using known standards before and during experimentation. Systemic hemodynamics were recorded and ventricular pressure-segment length waveforms and loops were generated and stored on the digital oscilloscope after 30 min of equilibration in the anesthetized state. Intravenous infusions of amrinone at 10, 20, 40, or 80 μg·kg⁻¹·min⁻¹ were administered in a random fashion after an intravenous bolus of 1 mg/kg amrinone. Hemodynamics were recorded and ventricular pressure-segment length loops were obtained at each dose of amrinone, as described above. Arterial blood gases were maintained at conscious levels by adjustment of nitrogen and oxygen concentrations and respiratory rate throughout the experiment. Anesthesia was discontinued and emergence allowed to occur at the completion of each experiment. Each dog was allowed to recover from anesthesia and autonomic nervous system blockade for 3 days before subsequent experimentation. A total of 27 experiments in 3 separate groups (amrinone administered in the conscious state and during isoflurane or halothane anesthesia) were completed, in which the same 9 dogs were used.

Calculation of Indices of Systolic and Diastolic Left Ventricular Function

Myocardial contractility was evaluated using the slope (Mw) of the PRSW relationship, as previously described. Briefly, a series of ventricular pressure-segment length loops were obtained by transient occlusion of the inferior vena cava in the conscious or anesthetized states and during each dose of amrinone. The area of each loop, corresponding to segmental stroke work (SW), was plotted against the corresponding EDL for each loop, and a linear regression analysis was used to describe the PRSW relationship slope (Mw) and length intercept (lw). The time constant of isovolumic relaxation (τ) was determined assuming a nonzero asymptote of left ventricular pressure decay, using the method of Raff and Glantz. Left ventricular negative dP/dt was plotted against the corresponding left ventricular pressure in 2-ms intervals between peak negative dP/dt and 5 mmHg above end-diastolic pressure. The time constant was calculated as the negative inverse of the slope of the negative dP/dt—left ventricular pressure relationship. The maximum segment lengthening velocity during rapid ventricular filling (dL/dtmax) was determined by differentiation of the continuous segment length waveform, as previously characterized. The regional chamber stiffness constant (Kp) was derived from ventricular pressure-segment length data between minimum ventricular pressure and the onset of atrial systole using a simple monoeponential relationship assuming an elastic model.

Statistical Analysis

Statistical analysis of data within and between groups in the conscious state with and without autonomic nervous system blockade, and during anesthetic interventions or amrinone infusions, was performed by multiple analysis of variance (MANOVA) with repeated measures, followed by application of the Student's t test with Bonferroni's correction. Changes within and between groups were considered statistically significant when the P value was < 0.05. The relationships between −dP/dt and ventricular pressure used to calculate τ, and between SW and EDL used to calculate Mw and lw, were described by use of linear regression analysis. Least-squares regression analysis was used to characterize the exponential relationship between ventricular pressure and segment length (calculation of Kp). All data were expressed as mean ± SEM.

Results

Autonomic nervous system blockade produced significant (P < 0.05) increases in heart rate and decreases in mean arterial pressure, left ventricular systolic pressure, systemic vascular resistance, stroke volume, and diastolic coronary vascular resistance. No changes in left ventricular end diastolic pressure, cardiac output, diastolic coronary blood flow velocity, rate pressure product, or pressure work index were observed (tables 1-3). There were no differences in baseline systemic or coronary hemodynamics with or without autonomic nervous system blockade between groups.

Administration of amrinone in the conscious state produced a significant increase in heart rate (table 1). Increases in cardiac output, pressure work index, rate pressure product, and stroke volume, and decreases in left ventricular end diastolic pressure, were also observed. No changes in mean arterial pressure, left ventricular systolic pressure, systemic vascular resistance, and diastolic coronary blood flow velocity occurred. Administration of amrinone to conscious dogs produced a dose-dependent increase in Mw (65 ± 8 during control to 108 ± 10 mmHg during 80 μg·kg⁻¹·min⁻¹ amrinone), indicating a direct increase in myocardial contractility (fig. 1). Concomitant and dose-related in-
Table 1. Hemodynamic Effects of Amrinone in Conscious Dogs

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Conscious Control</th>
<th>ANS Blockade</th>
<th>Amrinone Infusion (μg·kg⁻¹·min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>9</td>
<td>83 ± 5</td>
<td>121 ± 4</td>
<td>143 ± 7</td>
</tr>
<tr>
<td>MBP (mmHg)</td>
<td>9</td>
<td>99 ± 4</td>
<td>74 ± 5</td>
<td>77 ± 5</td>
</tr>
<tr>
<td>RPP (mmHg·beats·min⁻¹·10⁻⁵)</td>
<td>9</td>
<td>10.1 ± 0.6</td>
<td>11.0 ± 1.0</td>
<td>13.2 ± 1.3</td>
</tr>
<tr>
<td>LVSP (mmHg)</td>
<td>9</td>
<td>122 ± 4</td>
<td>92 ± 5</td>
<td>94 ± 6</td>
</tr>
<tr>
<td>LVEDP (mmHg)</td>
<td>9</td>
<td>9 ± 2</td>
<td>7 ± 1</td>
<td>6 ± 1</td>
</tr>
<tr>
<td>DCBF (Hz·10⁻⁵)</td>
<td>8</td>
<td>48 ± 3</td>
<td>53 ± 4</td>
<td>54 ± 4</td>
</tr>
<tr>
<td>DCVR (μl)</td>
<td>8</td>
<td>2.02 ± 0.19</td>
<td>1.28 ± 0.10</td>
<td>1.36 ± 0.11</td>
</tr>
<tr>
<td>dP/dtmax (mmHg/s)</td>
<td>9</td>
<td>2.208 ± 131</td>
<td>1.708 ± 56</td>
<td>1.890 ± 91</td>
</tr>
<tr>
<td>EDL (mm)</td>
<td>9</td>
<td>17.0 ± 0.7</td>
<td>16.4 ± 0.8</td>
<td>16.1 ± 0.7</td>
</tr>
<tr>
<td>ESL (mm)</td>
<td>9</td>
<td>14.3 ± 0.7</td>
<td>14.1 ± 0.8</td>
<td>13.7 ± 0.7</td>
</tr>
<tr>
<td>SS (%)</td>
<td>9</td>
<td>15.7 ± 1.4</td>
<td>14.5 ± 1.1</td>
<td>14.7 ± 1.1</td>
</tr>
<tr>
<td>CO (l/min)</td>
<td>8</td>
<td>2.5 ± 0.2</td>
<td>2.8 ± 0.2</td>
<td>2.9 ± 0.2</td>
</tr>
<tr>
<td>SVR (dynes·s·cm⁻⁵)</td>
<td>8</td>
<td>3.440 ± 250</td>
<td>2.220 ± 160</td>
<td>2.190 ± 160</td>
</tr>
<tr>
<td>SV (ml)</td>
<td>8</td>
<td>30 ± 2</td>
<td>24 ± 2</td>
<td>21 ± 2</td>
</tr>
<tr>
<td>PWI (ml/min⁻¹·100 g⁻¹)</td>
<td>8</td>
<td>9.1 ± 0.6</td>
<td>9.1 ± 0.7</td>
<td>10.0 ± 0.8</td>
</tr>
</tbody>
</table>

Data are mean ± SEM. ANS = autonomic nervous system; HR = heart rate; MBP = mean aortic blood pressure; RPP = rate pressure product; LVSP and LVEDP = left ventricular systolic and end-diastolic pressure, respectively; DCBFV = diastolic coronary blood flow velocity; DCVR = diastolic coronary vascular resistance; dP/dtmax = maximum rate of increase of left ventricular pressure; EDL and ESL = end-diastolic and end-systolic segment length, respectively; SS = segment shortening; CO = cardiac output; SVR = systemic vascular resistance; SV = stroke volume; PWI = pressure work index.

* Significantly (P < 0.05) different from ANS blockade.
† Significantly (P < 0.05) different from 10 μg·kg⁻¹·min⁻¹ amrinone.
‡ Significantly (P < 0.05) different from 20 μg·kg⁻¹·min⁻¹ amrinone.

Increases in peak positive left ventricular dP/dt (1,706 ± 56 during control to 2,127 ± 78 mmHg/s during 80 μg·kg⁻¹·min⁻¹ amrinone) and %SS were also observed (table 1). Dose-related decreases in the time constant of isovolumetric relaxation (τ) were produced during administration of amrinone to conscious dogs (32.7 ± 2.1 during control to 24.8 ± 0.9 during 80 μg·kg⁻¹·min⁻¹ amrinone) consistent with shortened ventricular relaxation (fig. 2). Concomitant increases in segment lengthening velocity (dL/dtmax; 34.8 ± 1.2 during control to 45.1 ± 2.3 mm/s during 80 μg·kg⁻¹·min⁻¹ amrinone) occurred, indicating enhanced rapid ventricular filling (fig. 3). Regional chamber stiffness (Kp) also decreased significantly when amrinone infusions were administered at the three highest doses, indicating that amrinone caused improvement in regional chamber distensibility (fig. 4).

Isoflurane anesthesia (1.25 MAC) produced significant decreases in heart rate, mean arterial pressure, left ventricular systolic pressure, cardiac output, stroke volume, rate pressure product, pressure work index, and diastolic coronary vascular resistance (table 2). No changes in left ventricular end-diastolic pressure, diastolic coronary blood flow velocity, or systemic vascular resistance were observed during administration of isoflurane to autonomically blocked dogs. In the presence of isoflurane, amrinone produced a dose-related increase in cardiac output and concomitantly declines in systemic vascular resistance. Heart rate was increased by amrinone only at the 80-μg·kg⁻¹·min⁻¹ infusion rate. No changes in mean arterial pressure or left ventricular systolic pressure were produced by amrinone during isoflurane anesthesia. Estimated myocardial oxygen consumption, as calculated by the rate pressure product and the pressure work index, increased during administration of amrinone to isoflurane anesthetized dogs (table 2).

Isoflurane caused decreases in Maw, dP/dtmax, and %SS with a direct negative inotropic effect (table 2; fig. 1). Increases in τ (30.8 ± 1.4 during control to 42.9 ± 2.7 ms at 1.25 MAC) and Κp (0.49 ± 0.08 during control to 0.61 ± 0.14 mm⁻¹ during 1.25 MAC), and a decrease in dL/dtmax (33.2 ± 2.5 during control to 22.7 ± 2.5 mm/s during 1.25 MAC), were also observed, consistent with impairment of diastolic function. Thus, isoflurane caused depression of contractile state, as well as negative lusitropic effects assessed in multiple phases of diastole. The PRSW slope (Maw) was increased by amrinone in a dose-dependent fashion (40

Anesthesiology, V 79, No 4, Oct 1993
Table 2. Hemodynamic Effects of Amrinone in Isoflurane-anesthetized Dogs

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Control</th>
<th>Blockade</th>
<th>Isoflurane (1.25 MAC)</th>
<th>Amrinone Infusion (μg·kg⁻¹·min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>9</td>
<td>78 ± 4*</td>
<td>126 ± 5</td>
<td>106 ± 4*</td>
<td>111 ± 4*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95 ± 4*</td>
<td>77 ± 3</td>
<td>59 ± 3*</td>
<td>58 ± 4*</td>
</tr>
<tr>
<td>MABP (mmHg)</td>
<td>9</td>
<td>10.1 ± 0.4*</td>
<td>11.1 ± 0.6</td>
<td>7.6 ± 0.5*</td>
<td>7.8 ± 0.5*</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>122 ± 4*</td>
<td>95 ± 3</td>
<td>75 ± 3*</td>
<td>78 ± 3*</td>
</tr>
<tr>
<td>RPP (mmHg·beats·min⁻¹·10⁻⁶)</td>
<td>8</td>
<td>50 ± 5</td>
<td>50 ± 5</td>
<td>49 ± 3</td>
<td>53 ± 4</td>
</tr>
<tr>
<td>LVSP (mmHg)</td>
<td>9</td>
<td>9 ± 1</td>
<td>8 ± 1</td>
<td>9 ± 1</td>
<td>7 ± 1</td>
</tr>
<tr>
<td>LVEDP (mmHg)</td>
<td>9</td>
<td>1.77 ± 0.19</td>
<td>15.0 ± 0.16</td>
<td>1.16 ± 0.09*</td>
<td>1.02 ± 0.10*</td>
</tr>
<tr>
<td>DCBFV (Hz·10⁻⁶)</td>
<td>8</td>
<td>2,272 ± 127*</td>
<td>1,584 ± 102</td>
<td>1,012 ± 67*</td>
<td>1,148 ± 54*</td>
</tr>
<tr>
<td>DCBFV (Hz·10⁻⁶)</td>
<td>8</td>
<td>17.1 ± 0.8</td>
<td>16.4 ± 0.6</td>
<td>16.2 ± 0.7</td>
<td>15.6 ± 0.6*</td>
</tr>
<tr>
<td>ESL (mm)</td>
<td>9</td>
<td>14.4 ± 0.8</td>
<td>14.1 ± 0.6</td>
<td>14.6 ± 0.6</td>
<td>13.7 ± 0.5*</td>
</tr>
<tr>
<td>SS (%)</td>
<td>9</td>
<td>15.6 ± 1.2</td>
<td>14.2 ± 1.0</td>
<td>9.8 ± 1.4*</td>
<td>12.0 ± 1.5*</td>
</tr>
<tr>
<td>CO (l/mm)</td>
<td>8</td>
<td>2.5 ± 0.2</td>
<td>2.8 ± 0.2</td>
<td>2.0 ± 0.2*</td>
<td>2.2 ± 0.2*</td>
</tr>
<tr>
<td>SV (mL)</td>
<td>8</td>
<td>3,200 ± 310*</td>
<td>2,220 ± 150</td>
<td>2,510 ± 210</td>
<td>2,310 ± 180</td>
</tr>
<tr>
<td>PVI (ml·min⁻¹·100 g⁻¹)</td>
<td>8</td>
<td>6.9 ± 0.5</td>
<td>9.3 ± 0.5</td>
<td>6.4 ± 0.4*</td>
<td>6.8 ± 0.4*</td>
</tr>
<tr>
<td>ET (%)</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>1.57 ± 0.05</td>
<td>1.59 ± 0.05</td>
</tr>
</tbody>
</table>

Data are mean ± SEM. ANSI = autonomic nervous system; HR = heart rate; MABP = mean arterial blood pressure; RPP = rate pressure product; LVSP = left ventricular systolic and end-diastolic pressure, respectively; DCBFV = diastolic coronary blood flow velocity; DCVF = diastolic coronary vascular resistance; dP/dt_max = maximum rate of increase of left ventricular pressure; ESL and ESD = end-diastolic and end-systolic segment length, respectively; SS = segment shortening; CO = cardiac output; SV = stroke volume; PVI = pressure work index; ET = end-tidal anesthetic concentration.

* Significantly (P < 0.05) different from control.
† Significantly (P < 0.05) different from isoflurane.
‡ Significantly (P < 0.05) different from 10 μg·kg⁻¹·min⁻¹ amrinone.
§ Significantly (P < 0.05) different from 20 μg·kg⁻¹·min⁻¹ amrinone.

± 5 during isoflurane alone to 71 ± 5 mmHg during 80 μg·kg⁻¹·min⁻¹ in the presence of isoflurane (fig. 1). Concomitant changes in dP/dt_max and %SS were also observed (table 2). Amrinone also improved the alterations in left ventricular diastolic function produced by isoflurane. Amrinone decreased τ in a dose-related fashion (42.9 ± 2.7 during isoflurane alone to 33.8 ± 2.2 ms during 80 μg·kg⁻¹·min⁻¹), indicating an enhancement of isovolumic relaxation (fig. 2). Similarly, improvement in rapid ventricular filling, as indicated by dL/dt_max (22.7 ± 2.5 during isoflurane alone to 28.9 ± 2.9 mm/s during 80 μg·kg⁻¹·min⁻¹), was also observed (fig. 3). Regional chamber stiffness (K_v) was decreased toward preanesthetic control levels by amrinone during isoflurane anesthesia (fig. 4), indicating that a possible improvement in regional wall compliance had occurred.

In the presence of autonomic nervous system blockade, halothane produced systemic and coronary hemodynamics that were similar to those produced by isoflurane. In contrast to isoflurane, however, halothane caused a significant increase in systemic vascular resistance and left ventricular end-diastolic pressure (table 3). Halothane also caused a significant and dose-dependent depression of left ventricular systolic (decreases in M_S, dP/dt_max, and %SS) and diastolic function (increases in τ and K_v and decreases in dL/dt_max). Although halothane caused significantly greater negative inotropic actions than did isoflurane at 1.25 MAC as evaluated by M_S when these agents were administered alone and during amrinone infusions (fig. 1), no significant differences between isoflurane and halothane were noted when parameters describing diastolic function were compared. Administration of amrinone to dogs anesthetized with halothane produced changes in systemic hemodynamics that were similar to those produced during isoflurane anesthesia. In the presence of halothane, however, amrinone caused significant decreases in left ventricular end-diastolic pressure that were not dose dependent, and no changes in diastolic

Anesthesiology, V 79, No 4, Oct 1993
AMRINONE AND LEFT VENTRICULAR FUNCTION

Table 3. Hemodynamic Effects of Amrinone in Halothane-anesthetized Dogs

<table>
<thead>
<tr>
<th>n</th>
<th>Conscious Control</th>
<th>ANS Blockade</th>
<th>Halothane (1.25 MAC)</th>
<th>Amrinone Infusion (µg·kg⁻¹·min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>9</td>
<td>84 ± 4⁺</td>
<td>121 ± 5</td>
<td>100 ± 4⁺</td>
</tr>
<tr>
<td>MABP (mmHg)</td>
<td>9</td>
<td>94 ± 3⁺</td>
<td>70 ± 5</td>
<td>59 ± 5⁺</td>
</tr>
<tr>
<td>RPP (mmHg·beats⁻¹·10⁻³)</td>
<td>9</td>
<td>10.1 ± 0.3</td>
<td>10.4 ± 0.7</td>
<td>7.2 ± 0.6⁺</td>
</tr>
<tr>
<td>LVSP (mmHg)</td>
<td>9</td>
<td>125 ± 4⁺</td>
<td>92 ± 4</td>
<td>77 ± 3⁺</td>
</tr>
<tr>
<td>LVEDP (mmHg)</td>
<td>9</td>
<td>9 ± 1</td>
<td>8 ± 1</td>
<td>11 ± 1⁺</td>
</tr>
<tr>
<td>DCBFV (Hz·10⁻⁶)</td>
<td>8</td>
<td>42 ± 6</td>
<td>41 ± 5</td>
<td>35 ± 4⁺</td>
</tr>
<tr>
<td>DCVR (µl)</td>
<td>8</td>
<td>2.15 ± 0.29⁺</td>
<td>1.67 ± 0.22</td>
<td>1.66 ± 0.24</td>
</tr>
<tr>
<td>(µl)/mmHg/s</td>
<td>9</td>
<td>2,368 ± 143⁺</td>
<td>1,589 ± 120</td>
<td>895 ± 47⁺</td>
</tr>
<tr>
<td>EDL (mm)</td>
<td>9</td>
<td>17.4 ± 0.8</td>
<td>17.2 ± 0.7</td>
<td>17.1 ± 0.8</td>
</tr>
<tr>
<td>ESL (mm)</td>
<td>9</td>
<td>14.8 ± 0.7</td>
<td>14.8 ± 0.6</td>
<td>15.8 ± 0.7⁺</td>
</tr>
<tr>
<td>SS (%)</td>
<td>8</td>
<td>14.9 ± 1.0</td>
<td>13.9 ± 1.0</td>
<td>7.3 ± 1.1⁺</td>
</tr>
<tr>
<td>CO (l/min)</td>
<td>8</td>
<td>2.6 ± 0.2⁺</td>
<td>3.0 ± 0.3</td>
<td>1.8 ± 0.1⁺</td>
</tr>
<tr>
<td>SV (dynes·s·cm⁻⁵)</td>
<td>8</td>
<td>3,050 ± 280⁺</td>
<td>1,200 ± 130</td>
<td>2,830 ± 340⁺</td>
</tr>
<tr>
<td>SV (ml)</td>
<td>8</td>
<td>31 ± 2⁺</td>
<td>25 ± 2</td>
<td>17 ± 1⁺</td>
</tr>
<tr>
<td>PV (ml·min⁻¹·100 g⁻¹)</td>
<td>8</td>
<td>9.3 ± 0.5</td>
<td>9.0 ± 0.6</td>
<td>6.0 ± 0.4⁺</td>
</tr>
<tr>
<td>ET (%)</td>
<td>9</td>
<td>—</td>
<td>—</td>
<td>1.07 ± 0.03</td>
</tr>
</tbody>
</table>

Data are mean ± SEM.
ANS = autonomic nervous system; HR = heart rate; MABP = mean aortic blood pressure; RPP = rate pressure product; LVSP and LVEDP = left ventricular systolic and end-diastolic pressure, respectively; DCBFV = diastolic coronary blood velocity; DCVR = diastolic coronary vascular resistance; dP/dtmax = maximum rate of increase of left ventricular pressure; EDL and ESL = end-diastolic and end-systolic segment length, respectively; SS = segment shortening; CO = cardiac output; SVR = systemic vascular resistance; SV = stroke volume; PV = pressure work index; ET = end-tidal anesthetic concentration.
* Significantly (p < 0.05) different from ANS blockade.
† Significantly (p < 0.05) different from halothane.

Discussion
Potent inhalational anesthetics, including isoflurane and halothane, produce cardiac depression characterized by abnormal left ventricular mechanics during systole17️⃣–19️⃣ and diastole32️⃣–35️⃣ that can be attributed to alterations in intracellular Ca²⁺ homeostasis at several sites within the cardiac myocyte. 20️⃣ Volatile anesthetics have been shown to reversibly depress myocardial contractility, prolong isovolumic relaxation, and decrease rapid ventricular filling in a dose-related fashion. 32️⃣–35️⃣ Halothane may also decrease left ventricular chamber distensibility, although this contention remains some-what controversial. 32️⃣–35️⃣–37️⃣ Isoflurane and halothane interfere with the inward Ca²⁺ current across the sarcolemma membrane produced by depolarization by reducing the number, or partially inhibiting the function, of voltage-dependent Ca²⁺ channels. 21️⃣–23️⃣ This blunting of the Ca²⁺ influx responsible for the initiation of mechanical systole has several important consequences, including decreases in the availability of Ca²⁺ for contractile activation, depression of Ca²⁺-dependent Ca²⁺ release from the sarcoplasmic reticulum (SR), and reduction of the amount of Ca²⁺ that can be subsequently stored in the SR. 20️⃣ Isoflurane and halothane also depress the peak concentration of intracellular Ca²⁺ during systole by directly affecting the SR, as well. Partial inhibition of Ca²⁺ uptake and enhanced Ca²⁺ leak from this organelle lead to decreases in accumulation of intracellular Ca²⁺ during systole, and may also contribute to delays in the removal of Ca²⁺ from the contractile apparatus during diastole. 20️⃣,26️⃣–29️⃣ These actions of volatile anesthetics cause direct declines in contractile force, and may also result in concomitant delays in isovolumic relaxation and impairment of rapid ventricular filling in vivo.

Anesthesiology, V 79, No 4, Oct 1993
Cyclic adenosine monophosphate (cAMP) plays an important role in the regulation of Ca\(^{2+}\) transients in the cardiac myocyte. Increases in intracellular concentrations of this cyclic nucleotide lead to activation of protein kinases responsible for several intracellular events that enhance systolic and diastolic performance.

Amrinone inhibits phosphodiesterase fraction III, the enzyme responsible for degradation of cAMP in the myocyte, increasing the concentration of cAMP. Amrinone-induced increases in Ca\(^{2+}\) influx resulting from cAMP-induced phosphorylation of the voltage-dependent Ca\(^{2+}\) channel represents a major mechanism by which amrinone exerts positive inotropic and chronotropic effects.\(^1\) Amrinone also augments function of the Ca\(^{2+}\)-ATPase in the SR via protein kinase-me-

Fig. 1. Preload recruitable stroke work slope (M\(_p\)) in conscious (top panel) and isoflurane- (iso; middle panel) or halothane-anesthetized (hal; bottom panel) dogs in the presence of pharmacologic blockade of the autonomic nervous system (ANS block). *Significantly (P < 0.05) different from ANS block; $significantly (P < 0.05) different from 1.25 MAC isoflurane or halothane; $$significantly (P < 0.05) different from 10 \mu g \cdot kg^{-1} \cdot min^{-1} amrinone; $$$significantly (P < 0.05) different from 20 \mu g \cdot kg^{-1} \cdot min^{-1} amrinone; $significantly (P < 0.05) different from 40 \mu g \cdot kg^{-1} \cdot min^{-1} amrinone; $significantly (P < 0.05) different from the corresponding value in isoflurane-anesthetized dogs.

Fig. 2. The time constant of isovolumic relaxation (\(\tau\)) in conscious (top panel) and isoflurane- (iso; middle panel) or halothane-anesthetized (hal; bottom panel) dogs in the presence of pharmacologic blockade of the autonomic nervous system (ANS block). *Significantly (P < 0.05) different from ANS block; $significantly (P < 0.05) different from 1.25 MAC isoflurane or halothane; $$significantly (P < 0.05) different from 10 \mu g \cdot kg^{-1} \cdot min^{-1} amrinone; $$$significantly (P < 0.05) different from 20 \mu g \cdot kg^{-1} \cdot min^{-1} amrinone.
Fig. 3. Maximum segment lengthening velocity during rapid ventricular filling (dL/dt max) in conscious (top panel) and isoflurane- (Iso; middle panel) or halothane-anesthetized (Hal; bottom panel) dogs in the presence of pharmacologic blockade of the autonomic nervous system (ANS block). *Significantly (P < 0.05) different from ANS block; **significantly (P < 0.05) different from 1.25 MAC isoflurane or halothane; $significantly (P < 0.05) different from 10 μg·kg⁻¹·min⁻¹ amrinone.

Fig. 4. Regional chamber stiffness (Kc) in conscious (top panel) and isoflurane- (Iso; middle panel) or halothane-anesthetized (bottom panel) dogs in the presence of pharmacologic blockade of the autonomic nervous system (ANS block). *Significantly (P < 0.05) different from ANS block; **significantly (P < 0.05) different from 1.25 MAC isoflurane or halothane.

diated phosphorylation of the regulatory protein phospholamban, causing increases in Ca²⁺ storage ability of this organelle and promoting greater concentrations of Ca²⁺ to be released during the next systole, while simultaneously enhancing the rate of uptake of Ca²⁺ from the sarcoplasm during diastole. In addition, amrinone-induced cAMP-stimulated phosphorylation of the troponin I subunit of the troponin-tropomyosin complex decreases the affinity of troponin C for Ca²⁺, enhancing dissociation of Ca²⁺ from this regulatory protein during diastole. Amrinone may also alter Ca²⁺}

regulation by affecting Na⁺-Ca²⁺ exchange through the sarcolemmal membrane, a mechanism that is independent of phosphodiesterase inhibition. Amrinone increases myocardial contractility in a variety of clinical and experimental settings of depressed contractile performance, including cardiac depression produced by volatile anesthetics. Presumably, this occurs through increasing intracellular Ca²⁺ availability during contraction by overcoming anesthetic-induced decreases in the concentration of activator Ca²⁺ resulting from depressed Ca²⁺ channel and SR function. Komai and Rusy demonstrated that amrinone could partially reverse the negative inotropic effects of halo-
thanate in isolated rabbit papillary muscle. Makela and Kapur demonstrated that amrinone blunted the cardiovascular depression caused by isoflurane or enfurane in acutely instrumented dogs. These investigators subsequently demonstrated that amrinone also improved myocardial contractility in the presence of β-adrenergic and Ca²⁺ channel blockade during isoflurane anesthesia. Rooney et al. also showed that amrinone reversed isoflurane-induced depression of contractile state and augmented coronary vasodilation produced by isoflurane when administered to isolated hearts. These effects occurred with concomitant increases in myocardial oxygen consumption. Although such investigations indicate that amrinone produces positive inotropic effects in the presence of volatile anesthetics, the results of these studies require qualification, because the indices of myocardial contractility used (e.g., cardiac index and left ventricular peak positive dP/dt) only indirectly indicate alteration in contractile state or are significantly dependent on ventricular loading conditions, which are known to occur because of amrinone-induced changes in systemic and pulmonary hemodynamics.

The results of the current investigation confirm and extend the findings of previous studies in vitro and in vivo. Amrinone produced a dose-dependent increase in myocardial contractility measured by a relatively heart rate- and load-independent index, the PRSW slope (M_max), in conscious (67% increase from control at 80 μg · kg⁻¹ · min⁻¹) and anesthetized dogs (78 and 89% increase from control at 80 μg · kg⁻¹ · min⁻¹ during 1.25 MAC isoflurane and halothane anesthesia, respectively). Elevation of the pressure work index also occurred, indicating that the augmentation of contractile state produced by amrinone in the conscious and anesthetized states was accompanied by modest but significant increases in myocardial oxygen consumption. This coupling of enhanced contractile state and myocardial oxygen consumption during amrinone administration has been documented previously by Rooney et al. and other investigators.

Phosphodiesterase III inhibitors have also been shown to enhance indices of left ventricular diastolic performance in severe congestive heart failure. This clinical syndrome is associated with markedly abnormal intracellular Ca²⁺ homeostasis, which may represent a final common pathway in chronic myocardial ischemia and ventricular hypertrophy. Monrad et al. and Piscione et al. demonstrated improvement in isovolumic relaxation, peak ventricular filling rate, and left ventricular diastolic pressure-volume relations when milrinone was administered intravenously or orally to patients with advanced congestive heart failure, respectively. In contrast, Herrmann et al. and Kraus et al. attributed improvement in measures of diastolic function associated with enoximone or milrinone to the vasodilator actions, but not the positive inotropic effects, of these agents. The conflicting nature of these findings may be attributed, at least in part, to alterations in systemic and pulmonary hemodynamics produced either directly by phosphodiesterase inhibition or indirectly via intact autonomic nervous system reflexes.

The mechanisms responsible for volatile anesthetic-induced negative inotropic effects have yet to be completely described, but may involve acute alteration of similar subcellular targets, as are chronically affected in congestive heart failure. Although amrinone reverses isoflurane-induced depression of global myocardial contractility and partially improves halothane-induced negative inotropic actions, the effects of amrinone on diastolic dysfunction caused by volatile anesthetics have yet to be described. The results of this investigation indicate that intravenous administration of amrinone causes equivalent improvement of indices of diastolic function in conscious and anesthetized chronically instrumented dogs with pharmacologic blockade of the autonomic nervous system. Improvement of diastolic function is manifested by enhancement of isovolumic relaxation (decreases in the time constant, τ), rapid ventricular filling (increases in dL/dt_max), and regional chamber stiffness (decreases in K_p) concomitant with increased myocardial contractility. Amrinone-induced increases in the reuptake of Ca²⁺ into the sarcoplasmic reticulum (SR), and enhanced dissociation of Ca²⁺ from the contractile apparatus during diastole via increased CAMP concentrations, may explain the positive lusitropic effects of amrinone in the conscious and anesthetized states.

The results of this investigation must be interpreted within the constraints of several limitations. Amrinone causes changes in systemic hemodynamics in autonomicomically blocked dogs, which may have influenced the current interpretation of alterations in measured indices of left ventricular diastolic performance. Amrinone produced an increase in heart rate and a decrease in preload (as indicated by left ventricular end-diastolic pressure and end-diastolic segment length) which was not dose related. Positive chronotropic actions and venodilatory actions of amrinone have been previously described, although tachycardia usually occurs.
AMRINONE AND LEFT VENTRICULAR FUNCTION

in response to peripheral vasodilation. The time constant of isovolumic relaxation (τ) is dependent on heart rate, and may be dependent on preload,\(^\text{53,54}\) and amrinone-induced changes in these variables may have contributed to enhanced isovolumic relaxation. Amrinone caused decreases in end-systolic segment length (ESL) in the presence of isoflurane or halothane that was not dose-related. Decreased affinity of the contractile apparatus for Ca\(^{2+}\) at shorter muscle lengths has been previously demonstrated,\(^\text{55-57}\) and it is possible that enhanced myocardial contractility or declines in afterload (as indirectly indicated by systemic vascular resistance) produced by amrinone in anesthetized dogs also resulted in simultaneous decreases in ESL (consistent with changes in cellular myofilbrillar length). These observations indicate decreased myofilbrillar affinity for, and enhanced release of, Ca\(^{2+}\) during this period of increased contractile state or decreased impedance to left ventricular outflow, leading to shortened isovolumic relaxation and augmented early ventricular filling.\(^\text{58}\) However, no changes in ESL were observed in the conscious state, and decreases in ESL observed in anesthetized dogs were not dose related, indicating that the enhancement in isovolumic relaxation and early ventricular filling caused by amrinone were not purely myocyte length-dependent events associated with increased myocardial contractility. The rate of rapid ventricular filling (as evaluated by dL/dt\(_{\text{max}}\)) is partially dependent on the gradient between left atrial and left ventricular pressure during this period of the cardiac cycle, which was not specifically measured in the current study. Alterations in ventricular loading conditions (most notably, declines in left ventricular end-diastolic pressure observed in conscious and halothane-anesthetized dogs) and increases in myocardial contractility may have also influenced passive ventricular elastic properties and subsequent interpretation of decreases in regional chamber stiffness.

The doses of amrinone used in this investigation were chosen to produce increases in left ventricular peak positive dP/dt in the conscious and anesthetized states following the methods described by Makela and Kapur.\(^\text{13-15}\) The amrinone bolus dose and infusion rates (1 mg/kg bolus followed by 10, 20, 40, or 80 μg·kg\(^{-1}\)·min\(^{-1}\) infusions) represent a "mid-range" dose in dogs. Makela and Kapur\(^\text{13-15}\) used bolus doses and infusion rates between 1 mg/kg plus 5 μg·kg\(^{-1}\)·min\(^{-1}\) and 4 mg/kg plus 100 μg·kg\(^{-1}\)·min\(^{-1}\), resulting in plasma concentrations ranging between 0.7 ± 0.1 to 14.1 ± 0.7 μg/ml, respectively. The bolus dose and infusion rates of amrinone used in the current investigation would be expected to produce plasma concentrations bounded within the limits described by Makela and Kapur.\(^\text{13-15}\) Similar amrinone plasma concentrations also produced dose-related increases in cardiac index in patients with congestive heart failure.\(^\text{39}\) Nevertheless, plasma concentrations of amrinone were not obtained in this investigation and, therefore, direct comparison of the effects of amrinone between the chronically instrumented canine model and humans should be approached with caution.

In summary, the results of this investigation indicate that amrinone causes dose-dependent positive inotropic effects, as evaluated using M\(_{\text{max}}\) in both conscious and anesthetized chronically instrumented dogs with autonomic nervous system blockade. In addition, amrinone produces positive lusitropic actions in the conscious state and improves isoflurane- or halothane-induced diastolic dysfunction, as indicated by shortened isovolumic relaxation, increased early ventricular filling, and reduced regional chamber stiffness. These results were accompanied by concomitant increases in myocardial oxygen consumption, as indicated by the pressure work index. The findings are consistent with amrinone-induced increases in cAMP that lead to enhanced Ca\(^{2+}\) availability during systole, and simultaneously improved Ca\(^{2+}\) sequestration during diastole. Thus, amrinone augments left ventricular performance in the conscious and anesthetized states, which may be related not only to positive inotropic actions, but also to positive lusitropic effects.

The authors wish to thank John Tessmer and David Schwabe, for technical assistance, and Mimi Mick, for preparation of the manuscript.

References

Anesthesiology, V 79, No 4, Oct 1993

35. Pagel PS, Kampine JP, Schmeling WT, Waltzier DC: Reversal of volatile anesthetic-induced depression of myocardial contractility by extracellular calcium also enhances left ventricular diastolic function. Anesthesiology 78:141–154, 1993

Anesthesiology, V 79, No 4, Oct 1993
AMRINONE AND LEFT VENTRICULAR FUNCTION

44. Katz AM: Cyclic adenosine monophosphate effects on the myocardium: A man who blows hot and cold with one breath. J Am Coll Cardiol 2:143–149, 1983

