The Effect of Tirilazad Mesylate (U74006F) on Cerebral Oxygen Consumption, and Reactivity of Cerebral Blood Flow to Carbon Dioxide in Healthy Volunteers

Karsten Skovgaard Olsen, M.D.,* Charlotte Videbaek, M.D.,† Niels Agerlin, M.D.,‡ Martin Kroll, M.D.,§ Torben Bage-Rasmussen, M.D.,‖ Olaf B. Paulson, M.D., Ph.D.,** Flemming Gjerris, M.D., Ph.D.††

Background: The 21-aminosteroids are a series of compounds designed to inhibit lipid peroxidation in the cell, and, as such, may have cerebral protective effects. The current study was performed to evaluate the effect of a 21-aminosteroid, tirilazad mesylate (U74006F), on cerebral blood flow, metabolism, and carbon dioxide reactivity.

Methods: Using a double-blind study design, eight volunteers received tirilazad mesylate, and eight others received vehicle. The cerebral blood flow was measured by single photon emission computerized tomography using ⁹⁹mTc inhalation in the resting condition at the beginning of the study and after infusion of tirilazad mesylate (1.5 mg/kg) or vehicle. Cerebral oxygen metabolism was calculated from the cerebral blood flow and the measured cerebral arteriovenous oxygen content difference. After both of the above cerebral blood flow measurements, arterial carbon dioxide tension was decreased by voluntary hyperventilation, and, later, increased by breathing an air/carbon dioxide mixture. The relative changes in cerebral blood flow induced by the PaCO₂ variations were estimated from the changes in the arteriovenous oxygen content difference.

Results: Blood pressure, pulse rate, and PaCO₂ were similar before and after the infusion of tirilazad mesylate in both groups, and there was no difference between the groups. The cerebral blood flow and oxygen metabolism did not change after the tirilazad mesylate infusion. The slope of the regression line of relative change of estimated cerebral blood flow and PaCO₂ (regression coefficients in both groups, > 0.90) was unchanged after infusion.

Conclusions: Tirilazad mesylate has no effect on cerebral blood flow, cerebral oxygen metabolism, or reactivity of cerebral blood flow to carbon dioxide in healthy volunteers. (Key words: Carbon dioxide, brain; cerebral blood flow; cerebral oxygen consumption; cerebral vascular reactivity. Pharmacology, free radical scavenger: tirilazad mesylate.)

OXYGEN free radicals arise from a number of sources within injured or ischemic tissue.¹ ² These radicals are highly reactive, and can attack cellular constituents. Unsaturated fatty acids comprising much of the phospholipid environment of cell and organicular membranes are particularly susceptible to the effects of oxygen free radicals or peroxidation. The process of peroxidation and the generation of oxygen radicals have been reviewed extensively.¹ ²

The 21-aminosteroids are a new series of compounds designed to inhibit lipid peroxidation in the cell. U74006F (tirilazad mesylate), the first member of the series of 21-aminosteroids available for clinical testing, inhibits lipid peroxidation by scavenging lipid free radicals.⁵ In addition, it has a stabilizing effect on the cell membrane, by blocking the release of free arachidonic acid from the injured cell membrane.⁴ Thus, tirilazad mesylate may have an important role in the treatment of cerebral ischemia and vasospasm. Results from animal studies have been promising,⁶ ⁷ but a place for these drugs in the treatment of human disease awaits outcome trials that are currently in progress.

Because tirilazad mesylate is a potentially useful drug in neurologic intensive care, it is important to know its effect on cerebral blood flow (CBF), cerebral oxygen metabolism (CMRO₂), and reactivity of cerebral blood flow to changes in arterial carbon dioxide tension (carbon dioxide reactivity).
Materials and Methods

Sixteen healthy male volunteers were included in the study, which was approved by the Scientific Ethical Committee. Informed consent, according to the Helsinki II declaration, was obtained from each participant. Eight volunteers, with a median age of 23 yr (range 20–30 yr) were assigned to group A (receiving tirilazad mesylate), and eight others, with a median age of 25 yr (range 20–31 yr), were assigned to group B (receiving vehicle only). One volunteer in group A was excluded because of malfunction of the jugular catheter. The volunteers fasted and did not smoke for at least 12 h before the study.

Before the volunteers were included in the study, it was ensured that their hemoglobin, hematocrit, leukocytes and differential count, thrombocytes, creatinine, glucose, albumin, protein, creatine kinase, bilirubin, basic phosphate, glutamyl-transferases, alanin-aminotransferase, lactat-dehydrogenase, carbon dioxide, calcium, phosphate, sodium, potassium, and ECG were normal, and that their urine was free of protein, glucose, ketones, and hemoglobin.

Study Design

The study was prospective, randomized, and double blind. Blood and urine samples were, again, collected for the same tests mentioned above, after which three sets of arteriovenous blood samples were drawn (baseline), followed by an absolute regional CBF measurement using 133Xe inhalation. During this measurement, one additional set of blood samples was collected. Then, the arterial carbon dioxide tension (PaCO_2) was decreased by voluntary hyperventilation, and, later, was increased by breathing an air/carbon dioxide mixture. The relative changes in CBF, induced by the PaCO_2 variations, were estimated from changes in the cerebral arteriovenous oxygen content difference (AVDO_2). After a pause of 50 min, group A received tirilazad mesylate, and group B received vehicle. When the infusion was finished, blood sampling, CBF measurement, and carbon dioxide manipulations were repeated.

Catheterization, Monitoring, and AVDO_2 Measurement

Under local anesthesia, a plastic cannula was introduced into the left radial artery, and a catheter was placed in the right internal jugular vein, with the tip in the jugular bulb. The correct position of the catheter was tested by injecting isotonic saline into the catheter, and confirmed by a typical murmur in the subject's ear. An intravenous catheter was placed in the brachial vein for the infusion of tirilazad mesylate or vehicle.

The mean arterial blood pressure (MABP) was continuously invasively measured via the cannula in the radial artery. During the study, ECG and pulse rate were also monitored.

All sets of blood samples consisted of one arterial and two venous blood samples (mean value used for calculations) that were drawn simultaneously from the radial artery catheter and jugular catheter, respectively. The blood was analyzed immediately for hemoglobin and hemoglobin saturation (OSM3 Hemoximeter, Radiometer, Copenhagen), oxygen tension, carbon dioxide tension, and pH (ABL3, Radiometer, Copenhagen).

Measurement of Absolute Regional CBF

During CBF measurements, the volunteers rested in quiet surroundings in the supine position and with eyes closed. 133Xe inhalation and single photon emission computerized tomography (SPECT) (Tomomatic 64; Medimatic, Hellerup, Denmark) of the brain were used for measurement of regional CBF. For the estimate of arterial 133Xe input to the brain, a detector over the apex of the right lung was used. The scanner yielded three parallel slices at 1, 5, and 9 cm above the orbitomeatal (OM) plane. The global CBF was estimated from the OM 5 plane as the mean of all brain pixel values. Regional CBF was estimated by a standardized set of symmetrically placed regions of interest. A side-to-side asymmetry ratio of less than 10% was considered normal.

The second CBF (SPECT) was corrected for any difference of PaCO_2 between the first and second CBF measurement using the carbon dioxide reactivity for each volunteer (calculated from a semilogarithmic plot of $1/\text{AVDO}_2$ and PaCO_2 [see below]).

Calculation of CMRO_2

During the CBF measurement (SPECT), one set of blood samples was drawn to determine AVDO_2 and PaCO_2. The AVDO_2 was calculated as the difference between arterial and venous oxygen content (O_2 saturation $\times 1.34 \times \text{hemoglobin concentration [g/100 ml]} + \text{O}_2$ tension [mmHg] $\times 0.003$ for arterial and venous blood, respectively). CMRO_2 was calculated as $\text{CBF} \times \text{AVDO}_2$.

Calculation of the Carbon Dioxide Reactivity

Initially, a baseline AVDO_2 and PaCO_2 were calculated.
as the mean value of three sets of blood samples, and were used as reference levels for the following carbon dioxide manipulations. The volunteers were asked to hyperventilate slightly for 3 min, and maximally for another 3 min. Blood samples for determination of AVDO₂ were drawn at 1.5, 3, 4.5, and 6 min after the start of the hyperventilation. The volunteer rested for 10 min, before starting to breathe air with 4% CO₂ for 3 min, and air with 7% CO₂ for another 3 min, to increase PacO₂. For determination of AVDO₂ values during increased PacO₂ levels, blood samples were drawn at 1.5, 3, 4.5, and 6 min after the start of the carbon dioxide breathing.

Relative changes of global CBF induced by carbon dioxide manipulations were estimated by the changes in the AVDO₂. A relative CBF value (1/AVDO₂) was calculated from baseline AVDO₂, which was expressed as 100%. Assuming a constant CMRO₂ during the PacO₂ manipulations (see discussion), determination of changes in 1/AVDO₂ gives a good estimate of changes in global CBF (according to CBF = k × 1/AVDO₂).

In each individual, the correlation of 1/AVDO₂ (%) and log 1/AVDO₂ with PacO₂ were analyzed using the Pearson product-moment correlation coefficient (r) by linear regression. The slope of the regression line (i.e., the percentage change of estimated CBF [1/AVDO₂] per mmHg change of PacO₂), was used as the carbon dioxide reactivity.

Tirilazad Mesylate/Vehicle

Group A received, over 10 min, 1.5 mg/kg tirilazad mesylate (Upjohn Company, Denmark). The concentration of tirilazad mesylate, which was dissolved in a citrate solution, was 0.75 mg/ml. The volunteers in group B received only the citrate vehicle. The tirilazad mesylate solution or vehicle were delivered in sealed bottles marked only with the randomization code.

Statistics

The values of CBF (SPECT), CMRO₂, and carbon dioxide reactivity, before and after infusion of tirilazad mesylate, respectively, were compared by the nonparametric Wilcoxon rank-sum test for paired sample observations. To evaluate differences between groups (A and B), the Wilcoxon–Mann–Whitney test for two independent groups was used. Differences were considered statistically significant when P < 0.05. The results are presented as medians, with the range in brackets.

Results

There was no significant difference between the groups in regard to sex or age. The results of the study are summarized in the tables.

Group A (Tirilazad Mesylate)

The MABP, pulse rate, and PacO₂ did not change after tirilazad mesylate infusion (table 1). The CBF (measured by SPECT) and CMRO₂ were unchanged after the infusion (table 2). The carbon dioxide reactivity (calculated from the semilogarithmic plot of 1/AVDO₂ vs. PacO₂, as this had a higher regression coefficient than the linear plot, see below) for each volunteer was used.

Table 1. Baseline Mean Arterial Blood Pressure (MABP), Heart Rate (HR), and Arterial Carbon Dioxide Tension (PacO₂) before and after Infusion of Tirilazad Mesylate (Group A) or Vehicle (Group B)

<table>
<thead>
<tr>
<th></th>
<th>Group A (n = 7)</th>
<th>Group B (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MABP (mmHg)</td>
<td>91 (79–100)</td>
<td>90 (81–103)</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>65 (62–66)</td>
<td>68 (53–80)</td>
</tr>
<tr>
<td>PacO₂ (mmHg)</td>
<td>38 (33–41)</td>
<td>40 (32–46)</td>
</tr>
<tr>
<td>After Infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MABP (mmHg)</td>
<td>87 (79–103)</td>
<td>90 (84–106)</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>71 (57–77)</td>
<td>63 (55–76)</td>
</tr>
<tr>
<td>PacO₂ (mmHg)</td>
<td>38 (34–40)</td>
<td>40 (35–45)</td>
</tr>
</tbody>
</table>

Values are median (range). There was no statistically significant difference between values before and after infusion or between groups.

Table 2. Cerebral Blood Flow (CBF) (ml·100 g⁻¹·min⁻¹) and Cerebral Oxygen Metabolism (CMRO₂) (ml·100 g⁻¹·min⁻¹) before and after Infusion of Tirilazad Mesylate (Group A) and Vehicle (Group B)

<table>
<thead>
<tr>
<th></th>
<th>Group A (n = 7)</th>
<th>Group B (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before Infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBF</td>
<td>62 (44–79)</td>
<td>54 (45–68)</td>
</tr>
<tr>
<td>CMRO₂</td>
<td>4.4 (3.3–5.2)</td>
<td>3.7 (3.2–4.8)</td>
</tr>
<tr>
<td>After Infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CBF</td>
<td>59 (50–67)</td>
<td>51 (42–71)</td>
</tr>
<tr>
<td>CMRO₂</td>
<td>59 (40–69)</td>
<td>53 (34–74)</td>
</tr>
<tr>
<td>CMRO₂</td>
<td>3.5 (3.1–5.2)</td>
<td>3.7 (2.5–4.8)</td>
</tr>
</tbody>
</table>

Values are median (range). There was no statistically significant difference between values before and after infusion or between groups.

CBFcorr = the second CBF corrected for minor differences in PacO₂ between the first and second CBF determination.

Anesthesiology, V 79, No 4, Oct 1993
to correct the second CBF (SPECT) for any difference of \(\text{PaCO}_2 \) from the first CBF measurement (table 2). A statistically significant correlation of \(1/\text{AVDO}_2 \) and \(\text{PaCO}_2 \) was obtained over the entire range of \(\text{PaCO}_2 \) values, both before and after the infusion, whether using a linear or semilogarithmic plot (table 3). Figure 1 shows the regression lines calculated from values before and after tirilazad mesylate infusion, respectively. One person in this group had pain at the site of infusion, and it was necessary to reduce the infusion rate.

Group B (Vehicle)

As in group A, MABP, pulse rate, and \(\text{PaCO}_2 \) were unchanged after infusion of the citrate vehicle (table 1). Furthermore, CBF and CMR\(_{O_2}\) were unchanged after the infusion (table 2). A statistically significant correlation of \(1/\text{AVDO}_2 \) and \(\text{PaCO}_2 \) was also obtained in this group. The carbon dioxide reactivity was not changed by the infusion of vehicle (table 3). Figure 2 shows the regression lines calculated from values before and after placebo infusion, respectively. One person in this group had some pain and edema at the site of infusion.

Comparison of Group A and B

The MABP, pulse rate, and \(\text{PaCO}_2 \) were not different in the two groups. There was no statistically significant difference between group A and B in regard to CBF, CMR\(_{O_2}\), or the carbon dioxide reactivity before and after the tirilazad mesylate or vehicle infusion, respectively.

The semilogarithmic plots yielded the best fit to the individual carbon dioxide reactivity curves, the median regression coefficient being between 0.95 and 0.97 in the two groups before and after the infusion. The linear plots, however, were almost as good, the median regression coefficient being between 0.90 and 0.93.

The median value of the lowest \(\text{PaCO}_2 \) values measured was 17 mmHg before and after infusion in both groups. The median value of the highest \(\text{PaCO}_2 \) was 50 mmHg before, and 47 mmHg after, tirilazad mesylate, and 55 mmHg before, and 52 mmHg after, vehicle. The range of the \(\text{PaCO}_2 \) values for the individual volunteers can be read from figures 1 and 2.

No changes in hematologic, blood chemistry, or urine analysis followed the administration of tirilazad mesylate.

Table 3. The Cerebrovascular Carbon Dioxide Reactivity Expressed as Percent Change in Cerebral Blood Flow (Estimated from Changes in AVDO\(_2\)) per 1 mmHg Change \(\text{PaCO}_2 \)

<table>
<thead>
<tr>
<th>Change (\text{PaCO}_2)</th>
<th>Group A (n = 7)</th>
<th>Group B (n = 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CO}_2\text{zm})</td>
<td>5.2 (3.7–8.9)</td>
<td>4.8 (4.4–6.2)</td>
</tr>
<tr>
<td>(\text{CO}_2\text{reg})</td>
<td>5.0 (4.6–6.2)</td>
<td>5.2 (4.6–5.7)</td>
</tr>
<tr>
<td>After infusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{CO}_2\text{zm})</td>
<td>5.2 (4.1–6.4)</td>
<td>5.0 (4.1–9.1)</td>
</tr>
<tr>
<td>(\text{CO}_2\text{reg})</td>
<td>4.8 (4.1–8.7)</td>
<td>5.2 (4.6–6.8)</td>
</tr>
</tbody>
</table>

Values are median (range). There was no statistically significant difference between values before and after infusion or between groups.

\(\text{CO}_2\text{zm} = \) the median value of linear plots of CBF versus \(\text{PaCO}_2\); \(\text{CO}_2\text{reg} = \) the median value of the semilogarithmic plots of CBF versus \(\text{PaCO}_2\).
Discussion

The method of estimating changes in global CBF from changes in AVDO₂, assuming a constant cerebral metabolism, is well established. The validity of the AVDO₂ method used in the current study requires that oxygen metabolism is constant during manipulations of the arterial carbon dioxide tension. This condition seems to be fulfilled, because several authors found CMRO₂ unaltered by voluntary hyperventilation. Studies in awake or anesthetized humans showed that increases in PₐCO₂ to 45-60 mmHg are accompanied by increases in CBF at an unchanged CMRO₂, as discussed by Siesjö. In the current study, neither CMRO₂ nor AVDO₂ was changed by either infusion of tirilazad mesylate or placebo.

The shape of the CBF/PₐCO₂ relationship has been described as an S-form curve with the steepest slope between 25-60 mmHg. According to Olesen et al., the relationship between CBF and PₐCO₂ is exponential in this interval. However, there is no uniformity of opinion on the relationship with regard to this physiologic range. Therefore, we choose to use both linear and exponential calculations (the correlation of PₐCO₂ with both 1/AVDO₂ and log 1/AVDO₂) and use the best-fitting curve.

The reproducibility, in normal volunteers, of the method of Xe inhalation used has been studied with a CBF measurement and three remeasurements within 1 day. No CBF fluctuations occurred during the 3-h observation period. One might object that the carbon dioxide manipulations in the first part of the study could influence the second part (e.g., inducing a certain degree of hyperemia). Because, however, 1 h separated the two parts of the study, this is not likely. The similar CBF measured by SPECT before and after placebo confirms this.

The results of the current study show that tirilazad mesylate does not influence CBF, CMRO₂, or the cerebrovascular carbon dioxide reactivity. However, the small number of volunteers in the two groups implies a relatively low power (1-B) of the statistical test. Given an influence of tirilazad mesylate on CBF of 30%, or on the carbon dioxide reactivity of 20%, the power would be about 90%. Thus, effects of a magnitude with clinical relevance, in all likelihood, would be revealed by the current study, whereas the number of volunteers is not sufficient to find minor effects of tirilazad mesylate.

The reduction in CBF that occurs in response to hypocapnia is used to decrease intracranial pressure during surgery and in the intensive care unit. Accordingly, the impact of drugs on the cerebrovascular carbon dioxide reactivity has important implications when used in these situations. A nonstimulating effect on the cerebral metabolism is also essential for a drug used in neurointensive care as a treatment of cerebral ischemia. The results obtained in the current study, how-

ever, may not be the same as in a study of patients with injuries of the brain and spinal cord, ischemic cerebrovascular disease, or cerebral ischemia, and further studies are needed to determine whether tirilazad mesylate has a therapeutic role in these categories of patients.

We conclude that tirilazad mesylate, administered to healthy volunteers, has no major effect on global or regional CBF, CMRO$_2$, or the reactivity of the cerebral vessels to changes in PaCO$_2$.

The authors wish to thank the laboratory assistants Gerda Thomsen, Gail Skovbo, and Pia Tejmer, for their excellent assistance.

References

