Effects of Subanesthetic Concentrations of Isoflurane and Their Interactions with Epinephrine on Acquisition and Retention of the Rabbit Nictitating Membrane Response

H. M. El-Zahaby, M.D.,* M. M. Ghoneim, M.D.,† G. M. Johnson, B.A.,‡ I. Gormezano, Ph.D.§

Background: Evidence concerning the concentrations of volatile anesthetics that prevent learning and recall is limited. Epinephrine is believed to enable learning during anesthesia. We investigated the effects of isoflurane and its interaction with epinephrine on learning and subsequent retention of the rabbit's classically conditioned nictitating membrane response.

Methods: In experiment 1, a tone (conditioned stimulus, CS) preceded paroarbitual shock (unconditioned stimulus, US) during 60-min daily sessions of 60 presentations of these paired stimuli for 6 days of acquisition training under 0, 0.4%, or 0.8% isoflurane (n = 8, 13, and 9, respectively). Responses were recorded as conditioned responses (CRs) if they occurred during the CS and before the onset of the US. After 1 day of rest, the animals were given 3 days of extinction consisting of 60 presentations of CS-alone and without isoflurane to assess the retention of CRs from acquisition training. In experiment 2, epinephrine in a dose of 0, 0.01, or 0.1 mg/kg was injected subcutaneously in rabbits receiving 0.4% isoflurane. Two types of epinephrine were used, a sustained release form and epinephrine hydrochloride. Acquisition and retention were tested in the same way as in experiment 1. No isoflurane or epinephrine was used during retention testing.

Results: Learning was significantly suppressed during the 0.4% isoflurane (≥0.2 MAC) treatment and eliminated during 0.8% (≥0.4 MAC). Information learned during administration of 0.4% isoflurane was not retained (P < 0.05). Although the low dose of epinephrine improved learning during the last day of the acquisition phase (P < 0.05), there were no differences between the treatment groups on any of the remaining acquisition or extinction days.

Conclusions: There was no learning during treatment with 0.8% concentration. Even a 0.4% concentration, which allowed some learning, abolished CRs in extinction, perhaps because of state-dependent retrieval. Epinephrine did not alter substantially the rates of CR acquisition or resistance to extinction. (Key words: Anesthetics, volatile: Isoflurane. Conditioning, Memory. Sympathetic nervous system, catecholamines: epinephrine.)

EVIDENCE concerning the concentrations of volatile anesthetics that prevent learning and recall is limited. Defining these concentrations is necessary because there are many clinical situations in which patients can tolerate only "light" anesthesia, such as during cesarean section operations, major trauma cases, and cases complicated by severe cardiovascular and other systemic diseases. It is possible that these patients may become conscious while totally paralyzed because there is no measurement that guarantees unconsciousness in the paralyzed patient.1

Isoflurane is the most commonly used volatile anesthetic in clinical practice. We wanted to assess its effects on learning and retention using a classical conditioning paradigm. Classical conditioning is one basic category of associative learning whose essential feature is a set of experimental operations involving an unconditioned stimulus (US) reliably evoking a measurable unconditioned response (UR), along with a conditioned stimulus (CS) that has been shown by test not to elicit the UR. The CS and US are presented repeatedly to the organism in a specified order and temporal spacing, and a response similar to the UR develops to the CS that is called the conditioned response (CR). Later, if the CS is presented repeatedly without US, the occurrence of CRs will decline gradually. This decline is called extinction.2 We tested retention during this extinction phase.

Classical conditioning occurs even in the simplest organisms. The rabbit's nictitating membrane response
(NMR) is the most widely used model system for studying associative learning in mammals. There is a wealth of data for both humans and animals on the behavioral properties of these elementary learned responses. The parameters governing the acquisition of the behavioral response of eyelid-blink responses are well defined and understood for rabbits and humans. Within certain boundaries, acquisition of the eyelid-blink response in rabbits (nictitating membrane response) and humans is governed by the same parameters and follows the same set of laws. Although classical conditioning is considered the simplest form of associative learning, it has been argued that both the behavioral and the neurobiologic mechanisms underlying classical conditioning are applicable to more complex types of learning. Therefore, assessing the effects of isoflurane upon acquisition and retention of conditioned responses would constitute an assessment of its effects upon a model response system.

Injection of epinephrine during training of rats under anesthesia resulted in the acquisition of conditioned fear, as shown 10 days later by conditioned suppression of water drinking. Learning did not occur in control animals that did not receive epinephrine. There are also anecdotal reports in humans that sympathetic stimulation may enhance learning during anesthesia.

In particular, the aims of the current study were to measure the effects of isoflurane on acquisition and retention of NMR and the effects of epinephrine as a possible factor modulating its actions. We used two concentrations of isoflurane in oxygen, 0.4% and 0.8%, and two doses of epinephrine, 0.01 and 0.1 mg/kg. Minimum alveolar concentration for isoflurane in the New Zealand white rabbit is 2.05%.

Materials and Methods

Subjects

Experimentally naive New Zealand white albino rabbits of either sex weighing approximately 2 kg upon arrival were obtained from a local supplier. Animals were housed individually with free access to tap water and given 60 g of Teklad (Harlan Teklad, Madison, WI) rabbit chow daily. Consistent with their rearing conditions, animals were kept in constant light.

Apparatus and General Procedures

The apparatus and procedures have been described in detail. Briefly, on the day after receipt, the rabbits were prepared for the experiments by placement of a suture loop (6-0 Ethilon Monofilament, Ethicon, Somerville, NJ) in the posterior margin of the nictitating membrane. Fur surrounding the right eye was removed, and two wound clips (Autosuture, Norwalk, CT) were attached to the skin over the paraorbital region at a distance 10 mm apart and 15 mm posterior to the dorsal canthus.

On the next day (adaptation day), rabbits were positioned in Plexiglas restrainers and placed in individual sound-attenuated chambers breathing 100% O₂ for 90 min. A muzzle headmount containing a photosensitive Polaroid transducer was positioned and secured on the animal's head. The rotary armature of the transducer was attached to the nictitating membrane with a horizontal bar (22-G needle) with one end hooked into the suture loop on the nictitating membrane and the other end fixed with a set screw to the end of the rotary armature. NMR was defined as an extension of the nictitating membrane of at least 0.5 mm. Resolution of the phototransducer was determined to be 0.06 mm movement (extension).

Animals were trained over 6 days (acquisition) during which CS-US pairings were used and treatments were given. The CS consisted of a 1-KHz tone of fixed duration (400 ms) and intensity (84 dB). An audio-oscillator with 11.4-cm-diameter speaker for delivery of the CS was positioned approximately 20 cm above and 8 cm in front of the rabbit's head. Electrodes for delivery of the US were attached to the wound clips. The US consisted of an electric shock (60 Hz) of fixed intensity (3 mA) and duration (100 ms). The time lapse between the onset of the CS and that of the US, which is defined as the interstimulus interval, was fixed at 400 ms. Analog-to-digital conversion, response analysis, and experimental control were done using an Apple II/FIRST computer system.

Each day of conditioning consisted of an initial 30-min administration of anesthetic to achieve equilibration between the inspired and alveolar concentrations. For 10 min, the animals received twice the assigned isoflurane concentration followed by 20 min of the assigned concentration. This “over-pressure” was used to reduce the time required to attain the target concentrations. After equilibration, 60 CS-US pairings (trials) were presented with an average intertrial interval of 60 s (randomly varied from 50–70 s). The

Anesthesiology, Vol 81, No 1, Jul 1994
trial consisted of a baseline recording period (400 ms immediately preceding tone onset), followed by presentations of tone and shock stimuli (fig. 1). Amplitudes (extension, mm) and latencies (ms) of the responses were recorded. Responses were recorded as CRs if they occurred during the CS, but before US onset, whereas those that occurred after US onset were recorded as URs. A response was defined as an nictitating membrane extension of at least 0.5 mm.

After 1 day of rest (animals in their home cages), animals went into 3 days of extinction, in which no treatments were administered except 100% O₂. The trials were the same as in acquisition sessions except that no shock (US) was delivered.

Anesthetic Delivery

Isoflurane was administered using Isotec 3 vaporizers (Ohmeda, Madison, WI) and delivered mixed with oxygen to individual animals at flow rates of 3 l/min. The composition of inspiratory gas was confirmed by a gas analyzer that was calibrated daily before use. Each animal was fitted with a specially designed anesthesia mask attached to a Jackson-Rees modified Ayre’s T-piece. Expired gases were scavenged and exhausted outside the building.

End-expired and arterial blood levels of isoflurane resulting from spontaneous breathing through the anesthesia system used were measured in an initial group of rabbits (n = 9). After placement of the mask, animals were allowed to breathe isoflurane in oxygen at 4.1% for 10 min followed by 20 min at 2.0%. After this 30-min equilibration period, 3-ml samples of arterial blood were drawn at 0, 30, and 60 min for quantitation of isoflurane by gas-liquid chromatography. After the final sample was drawn, the mask was removed and the trachea intubated with a cuffed tracheal tube, which was attached to the Jackson-Rees modification of the Ayre’s T-piece. The rabbit was allowed to continue breathing 2.0% isoflurane spontaneously for 15 min to compensate for intubation time, after which five sequential 1.0-ml gas aliquots were drawn through a needle that was placed in the lumen of the tracheal tube at the entrance to the mouth for measurement of end-expired concentrations. Hamilton gas-tight syringes fitted with Teflon plungers were used for sampling. Samples and standards were made soluble in n-heptane and separated on a 30-m capillary column (0.54 mm ID) with AT-624 liquid phase (Alltech, Deerfield, IL) using argon/methane (95%/5%) as the carrier gas. Chromatographic conditions included injection port at 100°C, column at 35°C, and detector at 225°C. We treated the animals with higher concentrations of isoflurane than those used in studying learning to allow us to intubate the trachea.

Experiment 1. Effect of Isoflurane on NMR

Thirty rabbits were randomized to receive either 0% (control; n = 8), 0.4% (n = 13), or 0.8% (n = 9) isoflurane. Rabbits went into an adaptation day followed by 6 days of acquisition (paired CS-US) training. After 1 day of rest, retention was tested over 3 days using only CS and without isoflurane treatment.

Experiment 2. Interactions of Isoflurane and Epinephrine on NMR

On each of the 6 days of acquisition training, two groups of animals received daily injections of epinephrine. Two types of epinephrine were used, a sustained release form (Sus-Phrine, Forest Pharmaceuticals, St. Louis, MO) and epinephrine hydrochloride. Sus-Phrine has a rapid action due to the epinephrine in solution, while the sustained activity is due to the crystalline epinephrine-free base in suspension.12 Epinephrine was administered randomly in three doses, either 0 (saline), 0.01, or 0.1 mg/kg subcutaneously using 25-G needles. The sites of injections were varied daily to avoid producing local necrosis. The drug was injected 5 min before each acquisition session. Our use of Sus-Phrine allowed us to avoid disturbing the animals during the acquisition sessions. Because of the short action of epinephrine hydrochloride, its administration was repeated every 15 min. There were 28 Sus-Phrine-treated animals (n = 9 each for the controls
and the 0.01 mg/kg group and n = 10 for the 0.1 mg/kg group). Sixty-two rabbits received epinephrine hydrochloride (n = 20 for the controls and n = 21 for each of the groups treated with epinephrine). All animals were treated with 0.4% isoflurane. The delivery of stimuli was identical to that of experiment 1 for the same 6 days of acquisition. During the 3 days of extinction, neither shock, isoflurane, nor epinephrine were used.

Statistical Analysis

A repeated measures analysis of variance was performed separately on the data of acquisition and extinction for each experiment. Each day of acquisition and extinction was composed of 60 trials, and the data of the trials were further subjected to a blocks analysis consisting of 12 blocks of 5 trials. Follow-up analyses were conducted to localize significant sources of variation and were carried out by the method of Tukey’s honest significant difference (hsd). The level of significance was set at P < 0.05.

Results

In the preliminary group used for determining equilibration between the inspired, end-expired, and arterial concentrations of isoflurane, analyses of inspiratory gas samples gave a mean result of 2.05 ± 0.15% (SE) (14.1 mmHg) with corresponding end-tidal isoflurane concentration of 1.87 ± 0.08% (13.26 mmHg). The mean arterial partial pressures of isoflurane were 10.44 ± 0.54 mmHg at time 0, 11.54 ± 0.39 mmHg at 30 min, and 11.40 ± 0.7 mmHg at time 60 min. Time 0 started after 10 min of administration of 4.1% isoflurane followed by 20 min of 2% (fig. 2). End-expiratory to inspiratory gas partial pressure ratio was 0.94, and arterial to end-expiratory partial pressures ratio was 0.84.

Experiment 1

Figure 3 presents the mean percentage of CRs to tone-CS across the 6 days of acquisition training as a function of isoflurane dosage (0, 0.4%, and 0.8%). The number of trials to the first CR was a direct function of drug dosage (table 1); whereas, subsequently, the overall frequency and terminal level of CRs was greatest for the control group, the 0.4% dose revealed a lower overall frequency and a lower terminal level of CR, and the 0.8% dose revealed little or no evidence of conditioning. Specifically, on the 1st day of training,
Table 1. Number of Trials to 1, 5, and 10 Consecutive Conditioned Responses

<table>
<thead>
<tr>
<th>Isoflurane Dosage (%)</th>
<th>Conditioned Response Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.0</td>
<td>33</td>
</tr>
<tr>
<td>0.4</td>
<td>133*</td>
</tr>
<tr>
<td>0.8</td>
<td>157*</td>
</tr>
</tbody>
</table>

The total number of trials was 360 (60 trials/day × 6 days). Animal groups that did not reach a criterion were assigned a value of 360.

* The number is greater than that for the controls (P < 0.01).
† The number is greater than those for both the control and the low dose groups (P < 0.01).

the level of CRs for the control group (0.0% isoflurane) was 9.9 ± 4.4% and was less than 2% in both groups receiving isoflurane. Over subsequent acquisition days, the rate and level of CRs of the control group increased substantially, reaching an asymptote of 99.1 ± 0.5% CRs on day 4 of acquisition. Conversely, the 0.4% (±0.2 MAC) isoflurane group reached terminal CR level of 68 ± 8.7%, whereas the 0.8% (±0.4 MAC) isoflurane group showed no evidence of CR acquisition across the 6 days of training. A four-factor analysis of variance (ANOVA; trial blocks, days, subjects, and doses) revealed a significant effect of dose (F(2,25) = 83.752, P < 0.001) and dose × days interaction (F(10,25) = 19.693, P < 0.001). Tukey’s LSD test indicated that the control group had significantly higher level of CR acquisition than the other two groups (P < 0.01). The 0.4% group had a higher level of CR acquisition than the 0.8% group (P < 0.01). ANOVA for the rate of NMRs during the baseline period (the 400 ms just before the CS onset) showed a main effect of dose (F(2,25) = 10.073, P < 0.001). Tukey’s LSD follow-up test indicated that the control group had significantly higher levels of responding than both the 0.4% and the 0.8% group (P < 0.01). Furthermore, ANOVA revealed no significant difference between the levels of CR acquisition for the 0.8% group and their baseline response rates. ANOVA for the amplitudes of URs before the occurrence of the first CR indicated a main effect of dose (F(2,25) = 0.117, P < 0.01), which the Tukey’s LSD test localized to the control group’s significantly higher levels than the other two groups (P < 0.01).

To determine isoflurane’s effects on the initiation of CR acquisition, calculations were made on the mean number of trials required to achieve the criteria of 1, 5, and 10 consecutive CRs. Table 1 presents the mean number of trials to each of these CRs at different isoflurane doses. As dosage increased, the number of trials required to attain the successive criteria increased. ANOVA on the number of trials revealed significant effects of dose [F(2,25) = 61.798, P < 0.001], criterion (F(9,225) = 36.826, P < 0.001) and dose × criterion (F(18,225) = 5.668, P < 0.001). Tukey’s LSD test indicated that the mean number of trials to each criterion was significantly greater for 0.4% isoflurane than for the control group (P < 0.01) and greater for 0.8% than for 0.4% groups (P < 0.01). In both control and 0.4% groups, 100% of the animals achieved each criterion. In contrast, for the 0.8% group, no animal achieved more than two successive CRs.

During extinction, there was a main effect of trial blocks (F(11,275) = 6.12, P < 0.001). Tukey’s LSD test indicated that the first four trial blocks were higher than the last four with regard to percentage of CR. There was also a main effect of dosage between groups with regard to percentage of CRs across the 3 days (F(2,25) = 12.27, P < 0.001). Tukey’s LSD test indicated that the percentage of CRs for the control group were higher than both isoflurane groups (P < 0.01 for both). There was no significant difference between the two isoflurane groups nor between each and its baseline response rates. Interaction of trial blocks × dose was significant (F(4,50) = 6.431, P < 0.001). Figure 4 shows percentage of CRs as a function of 12 trial blocks for the control group and the low isoflurane dose group during the last day of acquisition and all days of extinction. Although the low dose of isoflurane group had a percentage of CR value of 67.7 ± 9.6% on the last day of acquisition, it started the 1st day of extinction at a value of 0 for the first trial block. This unexpected finding led us to use a higher number of animals in this group as a precaution. We also examined the percentage of CR values for the last trial block on the last day of acquisition and the first trial block on the 1st day of extinction before the CRs naturally declined because of the absence of US. The mean values on the acquisition and extinction days for the control group were 87.5 and 96.9, for the low dose of isoflurane group 55.0 and 0.0, and for the high dose of isoflurane group 0 and 0, respectively.

Experiment 2
Both groups that were treated with epinephrine hydrochloride and Sus-Phrine displayed similar percentage of CR acquisition and extinction functions. ANOVA comparing CR percentages for both groups were done for individual days of acquisition and extinction in 12 five-trial blocks. There were no sig-
significant differences (P range 0.65–0.96). Figure 5 shows percentages of CRs for the epinephrine chloride groups. During acquisition days, the control, low-dose epinephrine, and high-dose epinephrine groups reached terminal levels of responding on day 6 of 56.6 ± 8.8, 78.3 ± 5.7, and 63.3 ± 8.3%, respectively. The main effect of dose and dose × days interaction was not significant. ANOVAs conducted on the percentage of CRs in acquisition and extinction in 12 five-trial blocks revealed only a significant effect of days in acquisition that was localized to a significantly greater frequency of CRs for the low-dose epinephrine hydrochloride group than the control group on day 6 ($P < 0.05$). There were no differences in percentage of CRs between groups on any of the remaining acquisition days or extinction days. In addition, ANOVAs revealed there were no significant differences between the three groups in CR amplitudes, latencies, or baseline response during acquisition and extinction.

Power analyses were conducted to examine whether the inability to detect substantial differences between the epinephrine-treated and saline groups was due to an inadequate sample size. At a power of 0.8 and a significance level of 0.05, our sample size could have detected differences in percentages of CRs of 29 to 32 and 24 between the groups during acquisition and extinction, respectively.
INTERACTIONS OF ISOFLURANE AND EPINEPHRINE ON MEMORY

Discussion

To provide consistent conditions for all animals, we used face masks, because animals receiving 100% O₂ and low isoflurane concentrations would not tolerate laryngeal masks or tracheal tubes. In the preliminary measurements of inspired, end-expired, and arterial partial pressures of isoflurane, the end-expired to inspired partial pressures ratio and the mean arterial to end-expired ratio were greater than those obtained by Landon et al. and Frei et al. in adult patients.¹⁴,¹⁵ These two studies had end-expired to inspired partial isoflurane pressure ratios less than 0.8 and arterial to end-expired ratios of 0.66 and 0.78, respectively. The rate of isoflurane uptake was enhanced in our study probably because of the use of small animals like rabbits, with smaller functional residual capacity per unit of body weight and a greater tissue blood flow, especially to vessel-rich group, compared to human adults.¹⁶ The close correlation between inspired, alveolar, and arterial anesthetic concentrations allowed us to proceed using inspired measurements only.

Isoflurane showed a dose-dependent effect on acquisition of NMIs. The results are similar to those obtained by Chortkoff et al. in human volunteers.¹⁷ They found complete suppression of learning at 0.4 MAC and an ED₅₀ of 0.2 MAC isoflurane. Our low dose of isoflurane suppressed the rate of CR acquisition and the final asymptotic level of performance. Retention of the information learned was suppressed, as described later. The high dose eliminated learning as evidenced by calculating percentage of CRs and by numbers of trials to achieve certain criterion. The dose effect on the motor component of conditioning was apparent in decreasing the amplitude of URs before occurrence of any CR. However, localization of the exact neural site(s) of action of isoflurane upon URs would require electric brain stimulation of different sites of the NMR circuit or implantation of electrodes in specific brain sites and recording their neuronal activities.¹⁸

We conducted a more detailed analysis of isoflurane's impairment of CR acquisition with a determination of the anesthetic's effect on the initiation of conditioning. The analysis revealed a dose-dependent increment in the number of trials to the occurrence of the 1st, 5th, and 10th consecutive CRs. The dose-dependent effects of isoflurane on trials to criterion and the overall level of CRs indicate that the pattern of isoflurane's effects were essentially the same before and after CR occurrence. This similarity suggests that a principal effect of the drug was to impair the entry of conditioning components (CS, US, and/or UR) into the process governing acquisition.

Extinction refers to the experimental procedure in which, subsequent to acquisition training, the CS is presented repeatedly without US. Accordingly, in the absence of the US, a decline in responding occurs. The overall frequency of CRs during extinction and/or rate of decline are taken as measures of the strength of acquisition without the possible confounding of performance factors operating in acquisition. Moreover, the level of responding also can be used as a measure of retention of CRs learned during acquisition. In particular, an excellent measure of retention is obtained in the early blocks of trials in extinction before there is a substantial decrement in CRs. The control group showed gradual decline in percentage of CRs during extinction with higher CR levels at early trial blocks than at later ones. Both drug groups started at very low levels, although the low-dose isoflurane group reached terminal acquisition levels of 68%. Both drug groups started each day of extinction at the lowest CR levels for these days. Percentage of CRs for both groups during extinction did not differ from their percentage responding during the baseline periods. This behavior of the isoflurane-treated groups suggests two explanations. The first is that the drug may block the consolidation of new memories. The second is that poor memory retention may be due to the difference in pharmacologic state between acquisition and extinction. In the former, it is assumed that proper memory traces are not created, whereas in the latter, it may be the case that memory traces were established but cannot be accessed because of the change in pharmacologic state. A look at figure 4 suggests that lack of consolidation is not an adequate explanation for the effects of isoflurane. For example, animals that received the low dose of isoflurane had a percentage of CRs in the first trial block of the last day of acquisition of 74.5, and the mean percentage of CRs for that day was 67.7. If isoflurane had blocked consolidation, the percentage of CRs in the first trial block for that day should have started at a much lower percentage and increased in the following trials. A more plausible explanation for the dismal extinction levels with isoflurane is that the drug altered the properties of the tone CS so that, when there was no isoflurane, the animals did not recognize the tone as before. This is known as state-dependent memory, where memories formed in one drug state will be better recalled in the same drug state than in a different one. Mismatching

Anesthesiology, V 81, No 1, Jul 1994
of drug states during acquisition and extinction may
decrease the accessibility of information.19 Adam et
al.20 showed that state-dependent memory occurred in
subjects who received isoflurane. We also have evi-
dence that nitrous oxide produces state-dependent re-
trieval in the same animal preparation that we used in
the current study.#

Whatever is the explanation for the fragile nature of
memories acquired during anesthesia, this fragility may
account for the often reported failures to elicit recall
for intraoperative events despite the fact that patients
were known to be awake during the surgery, and the
claims that reported cases of recall in the anesthesia
literature may be the tip of the iceberg.21,22

Catecholamines modulate learning and memory func-
tions.23,24 There is evidence that epinephrine influ-
ences memory storage. Thus post-training injections
of epinephrine produce dose-dependent and time-de-
pendent enhancement of retention.23,24 The key role
of the adrenal gland in animal studies correlates with
the profound effect of emotional states on the ability
of humans to remember experiences.25 Epinephrine
probably acts through the release of central norepi-

Manuscript in preparation.

Anesthesiology, V 81, No 1, Jul 1994

nephrine.24 Weinberger et al.7 reported that injection
of epinephrine during training of rats under anesthesia
resulted in the acquisition of conditioned fear, which
was retained until at least 10 days later, as revealed by
the ability of the CS to produce conditioned suppres-
sion of drinking water. There also are anecdotal reports
that arousal or sympathetic stimulation during anes-
thesia in humans may explain the sporadic incidence
of awareness and learning during surgery, when learn-
ing cannot be demonstrated in many studies.9 It is pos-
able that some anesthetic or surgical manipulations
resulted in the release of epinephrine and that, in such
cases, patients can learn and remember events taking
place during anesthesia.

We used the same doses of epinephrine as Weinberger
et al.,7 except that we used two types of epinephrine.
One is epinephrine aqueous suspension (Sus-Phrin),
which produces both rapid and sustained epinephrine
activity. The rapid action is due to the epinephrine in
solution, while the sustained activity is due to the crys-
talline epinephrine-free base in suspension.12 The
longer duration of action provided by this preparation
compared to the aqueous solution was of importance
because Weinberger et al. used only 10 paired trials
of CS and US presented over a 10-min interval, whereas
we used 60 trials over a 60-min session. In another set
of rabbits, we also used aqueous epinephrine to sim-
ulate closely the drug treatment provided by Weinber-
ger et al., however, because of our longer trial sessions,
we repeated the injections every 15 min. (It should be
noted that we did not study the whole spectrum of
actions of epinephrine, which would have included
treating a group of rabbits receiving 100% O2 with epi-
nephrine. This would have added to an already long
and expensive study. It also would have been difficult
to see an improvement over animals receiving 100%
O2 with no epinephrine because of the rapid rate of
acquisition in the latter group. Our only aim was to
replicate the work of Weinberger et al.) We found no
improvement of learning or retention caused by epi-
nephrine. A small significant enhancement was ob-
served only during the last day of acquisition in the
group which was treated with 0.01 mg/kg epinephrine.
This is probably meaningless in the context of enabling
learning in anesthetized or semi-anesthetized subjects,
because it was not reflected in the retention perfor-
mance. Power analysis of the data revealed that our
sample size was adequate to detect practically signif-
cant differences between the groups, e.g., one standard
deviation difference. We used a different species than
did Weinberger et al. Another difference in our methods
is the type of anesthetic used and its administration.
Weinberger et al. used a mixture of pentobarbital and
chloral hydrate injected in a bolus mode achieving un-
known concentrations in the brain; we used isoflurane
with some control over its delivery to the arterial blood
and its sites of action in the CNS.

Our NMR preparation is well established and widely
used for studying associative learning and its interaction
with drugs. The CS-CR functions are obtained in cir-
cumstances in which the CS and US are completely
under the experimenter's control. Both the acquisition
and retention of CRs can be observed from the start of
training. Conversely, the conditioned suppression (or
fear) paradigm used by Weinberger et al. involves a
transfer of training design in which the stimulus pair-
ings of classical conditioning are followed by the pre-
sentation of the CS during some instrumental condi-
tioning task. The fear CR is not identical to the UR to
shock. Therefore, the effect of CS-US pairings must be
measured indirectly. Also, no URs are recorded. There-
fore, it is unlikely that the conditioned suppression
paradigm would be more sensitive to experimental
variables than our Pavlovian paradigm. It also should
be noted that, critical to the findings of Weinberger et al., is their observation of the retention of conditioned fear CRs over a 10-day interval. Yet, that basic finding of 10-day retention does not appear to the authors' knowledge to have been replicated in the conditioned suppression literature. Moreover, no published studies have appeared replicating the findings of Weinberger et al. with the same experimental paradigm and experimental procedures.

In summary, we found that isoflurane suppresses learning in a dose-dependent manner and impairs retention, perhaps due to state-dependent retrieval. We failed to detect evidence that epinephrine improves learning or retention impaired by isoflurane. Two reports in the literature have influenced the recent surge of interest in learning during anesthesia and have been cited often. One of them is Weinberger et al.'s work in animals, and the other is Levinson's study in humans in which he exposed patients to a faked crisis during anesthesia and the majority of the patients recalled the crisis while hypnotized in the postoperative period. It is therefore disturbing that we could not replicate the essential aspects of one study and another group could not replicate the other.**

The authors thank Anaquest Company for supplying part of the isoflurane used in this study and Merry Howell for preparation of the manuscript.

References

17. Chortkov BS, Bennett HL, Eger EI: Subanesthetic concentrations of isoflurane suppress learning as defined by the category-example task. Anesthesiology 79:16-22, 1993

** Chortkov BS: Personal communication. 1994.