CORRESPONDENCE

Anesthesiology
81:524, 1994
© 1994 American Society of Anesthesiologists, Inc.
J. B. Lippincott Company, Philadelphia

In Reply.—Xomed-Treace, Inc., acknowledges the merit of the suggestions made by Moukabary et al. The addition of the plastic bulb protector to the product was made to enhance product safety and, in response to the report, we have taken action to alert users to remove the plastic bulb protector by changing the product use instructions that accompany every unit we distribute. The warning statement will appear in bold print in the section of the instructions discussing patient intubation.

Second, we are exploring the suggestion of the authors to change the bulb protector from the current clear plastic to a colored, opaque plastic. This longer term option will leave no room for confusion or misunderstanding of the purpose of the plastic cap over the bulb. Of course, this option will take longer to implement because of the necessity to research the optimum protector that is cost-effective and compatible with our processing systems.

Terry C. McMahon
Manager, Regulatory Affairs/Product Information
Xomed-Treace
6745 Southpoint Drive North
Jacksonville, Florida 32216-0980

(Accepted for publication April 26, 1994.)

Anesthesiology
81:524, 1994
© 1994 American Society of Anesthesiologists, Inc.
J. B. Lippincott Company, Philadelphia

Tacrine May Prolong the Effect of Succinylcholine

To the Editor.—Tacrine hydrochloride (Cognex-Park-Davis) soon will be available for the treatment of Alzheimer’s disease.

As a resident in the United Kingdom in the 1970s, I was taught to use this drug to prolong the action of succinylcholine. One intravenous dose of 10 mg prolonged the succinylcholine by about 3 times the normal duration. This routinely was combined with atropine to prevent an expected bradycardia. I could find no data on the effect of oral tetrahydronaminicrone on succinylcholine duration.

Perhaps anesthesiologists should be aware of this potential drug interaction.

Sara Ruth Davies-Lepie, M.D., M.B., Ch.B., F.F.A.R.C.S.
Lahey Clinic
41 Mall Road
Burlington, Massachusetts 01805

References


(Accepted for publication May 2, 1994.)

Anesthesiology, V 81, No 2, Aug 1994

Mark W. Pierce, M.D., Ph.D.
Vice President
Clinical Research, CNS
Park-Davis Pharmaceutical Research
2800 Plymouth Road
Ann Arbor, Michigan 48105

(Accepted for publication May 2, 1994.)

In Reply.—Cognex, the first effective treatment for Alzheimer’s disease, was cleared for marketing in the United States in September 1993. We are aware of the action of Cognex on succinylcholine during anesthesia, and this information is included in its label, where it is stated, “Cognex as a cholinesterase inhibitor is likely to exaggerate succinylcholine-type muscle relaxation during anesthesia.” This action is perfectly consistent with the pharmacology of the drug.