CORRESPONDENCE

Incorrectly Adjusted Vaporizer Exclusion System

To the Editor:—We recently had an equipment problem that fortunately resulted in no patient injury. The patient was a healthy 5-month-old infant undergoing bilateral club foot repair. After a 3.5-h combined halothane/caudal anesthetic without incident, the patient was switched to desflurane to facilitate awakening. The desflurane vaporizer had been retrofitted onto a Drager machine. The desflurane vaporizer was turned on without the halothane first being turned off because of an incorrectly adjusted exclusion system. This was quickly discovered because of the alarms on a Rascal gas monitor showing two gases present. When the other machines in the department were checked, one other Drager was found to have this capability.

We never had this problem until retrofitting our machines with desflurane vaporizers and bring it to the attention of others as they may prevent the same problem.

James P. Viney, M.D.
Alan D. Gartrell, M.D.
Department of Anesthesiology
Primary Children's Medical Center
100 North Medical Drive
Salt Lake City, Utah 84113

(Accepted for publication May 24, 1994.)

Improvement of the Left Broncho-Cath Double-lumen Tube

To the Editor:—It is sometimes difficult to properly position a conventional left-sided double-lumen tube (cDLT, Mallinckrodt Broncho-Cath).1

We think the reasons for this difficulty are the following: First, the angles of the tracheal axis with the proximal left main bronchus (angle a in fig. 1) and with the peripheral left main bronchus (angle b in fig. 1) increase greatly when the patient is moved from supine to left lateral position. When the angle changes, the bevel of the bronchial tip of the cDLT occasionally becomes obstructed by the medial wall of the left mainstem bronchus. In one study, angle a in our patients (9 men and 2 women, aged 22 to 73 yr, between 158 and 182 cm in height) changed from 43.9° ± 5.5° in supine position to 50.6° ± 7.1° in left lateral position. Angle b changed from 69.1° ± 9.5° in supine position to 87.9° ± 14.6° in left lateral position.

Second, the elongated or enlarged aortic arch, seen in patients undergoing thoracotomy, can compress the trachea from the left side. In such cases, the tracheal outlet of the cDLT should be positioned properly at the orifice of the right main bronchus.

Finally, the distance from the left endobronchial tip to the distal margin of the tracheal lumen tip of the cDLT (55 mm) is greater than the average left mainstem bronchial length (men, 49 ± 8 mm; women, 44 ± 7 mm).2 Therefore, we recommend four modifications to the cDLT (mDLT):

1. the bevel of the bronchial tip is modified (fig. 2),
2. the angle between the tracheal axis and the bronchial tube axis is increased from 30° to 45° (fig. 2),
3. the length of the bronchial tube is shortened to 40 mm to reduce risk of obstruction of the left upper lobe by the tip of the bronchial tube when an mDLT is positioned with its tracheal outlet fitting properly at the orifice of the right main bronchus, and
4. the endobronchial cuff is shortened 3 mm and moved 3 mm
distally.
Fig. 2. Tips of a conventional (top) and an improved (bottom) left-sided Broncho-Cath.

tally to prevent obstructing the carina and right mainstem bronchus (fig. 2).

In a study of 16 patients, we found that these modifications allowed easier fiberoptic visualization of the left upper lobe bronchus and increased the margin of safety for obstruction of the same bronchus.

Theoretically, insertion of an mDLT could be slightly more difficult or cause bronchial wall trauma from the leading edge of the endobronchial tube. We had no difficulty in positioning the mDLT in this study.

We think a carinal hook is unnecessary because the tracheal lumen tip can function as a carinal hook. Dislodgement intraoperatively should, theoretically, be easier to treat. Because the tracheal lumen tip prevents excess caudal movement, if the tube becomes dislodged, it should merely be advanced until gentle resistance to movement is felt. It then should be pulled back about 1 cm. When right lung ventilation is restored, the tracheal lumen tip has been resedated.

Naoki Yahagi, M.D.
Staff
Surgical Intensive Care Unit
National Cardiovascular Center

Hitoshi Furuya, M.D.
Associate Professor
Department of Anesthesiology
Nara Medical University

Junki Matsui, M.D.
Staff Anesthesiologist
Department of Anesthesiology
Shiga University of Medical Science

Yoshikazu Sai, M.D.
Assistant Professor
Department of Anesthesiology and Intensive Care Unit
Shiga University of Medical Science

Yoshikuni Amakata, M.D.
Professor and Chairman
Department of Anesthesiology and Intensive Care Unit
Shiga University of Medical Science

Keiji Kumon, M.D.
Chief
Surgical Intensive Care Unit
National Cardiovascular Center
Suta, Osaka 565, Japan

References

(In accepted for publication May 25, 1994.)

Anesthesiology
81:782, 1994
© 1994 American Society of Anesthesiologists, Inc.
J. B. Lippincott Company, Philadelphia

In Reply—We are pleased to hear of Yahagi et al.’s successful study using Broncho-Cath left endobronchial tubes with modified tip. His findings agree with other preference studies of this design conducted by investigators around the world. Similar preferences were expressed in earlier work by Benumof and again by Klippe et al. and also by Desai and Rocke and Allen. These minor modifications reduce the variability typical in past forms of the time-tested Robertsshaw design and are intended to facilitate the practice of fiberoptic bronchoscopy to guide the placement of double-lumen tubes. We are grateful for the contributions of Yahagi et al. and other investigators in this work.

Robert A. Virag
Director, Research and Development
Mallinckrodt Medical, Inc.
675 McDonnell Boulevard

P.O. Box 5840
St. Louis, Missouri 63134

References

(In accepted for publication May 25, 1994.)

Anesthesiology, Vol 81, No 3, Sep 1994