Effects of Eltanolone on Cerebral Blood Flow and Metabolism in Healthy Volunteers

Jørgen Wolff, M.D.,* Peder Carl, M.D.,† Peter Bo Hansen, M.D.,‡ Steffen Højsgaard, M.D.,§ Mogens S. Christensen, M.D., Ph.D.,∥ Mogens B. Sørensen, M.D., Ph.D.¶

Background: Eltanolone is a new steroid anesthetic agent that may prove to be useful in clinical practice. The aim of the present study was to evaluate the effects of eltanolone on cerebral blood flow (CBF) and metabolism in healthy volunteers.

Methods: In a randomized cross-over study, eight subjects received intravenous eltanolone 0.6 mg/kg or its vehicle. CBF was measured with the intravenous xenon 133 technique before and 2 and 30 min after administration of eltanolone or vehicle. Cerebral metabolic rate for oxygen (CMRox) was calculated as the product of the measured cerebral arteriovenous oxygen content difference and the blood flow.

Results: CBF decreased from a baseline value of 64 ± 4 (mean ± SD) to 42 ± 6 ml · 100 g⁻¹ · min⁻¹ at 2 min after administration of eltanolone and only 4% after vehicle. Cerebral oxygen consumption was 4.1 ± 0.4 ml · 100 g⁻¹ · min⁻¹ at baseline and decreased to 2.7 ± 0.6 at 2 min after eltanolone, whereas metabolism did not change significantly after administration of vehicle. At 30 min CBF and Cerebral metabolic rate for oxygen were 16 and 10% less than baseline values, respectively. Coupling between CBF and Cerebral metabolic rate for oxygen was preserved at all measurements. After administration of eltanlone a significant decrease in mean arterial blood pressure of 6 mmHg and a period of hyperventilation were observed. This did not occur after injection of vehicle.

Conclusions: Eltanolone was shown to reduce cerebral oxygen consumption and blood flow in healthy volunteers. Coupling between metabolism and flow was preserved. (Key words: Anesthetics, intravenous; eltanolone. Brain: cerebral blood flow; cerebral oxygen consumption.)

THE anesthetic properties of some steroids have been known for several years. Only a few drugs of this class have been introduced into clinical practice, and all preparations have been abandoned because of serious side effects.1–3 Eltanolone (3 α-hydroxy-5β-pregnane-20-one, pregnanolone) is a naturally occurring metabolite of progesterone without notable endocrine actions. Its anesthetic effects have been recognized since 1957.4 However, the drug has not been investigated clinically because of its low water solubility. Eltanolone is now formulated in an oil-and-water emulsion, which is currently in use as a solvent for propofol.

Several reports have shown that the pharmacodynamic properties of eltanlone are similar to those of another steroid anesthetic, althesin, with rapid induction of anesthesia of short duration.5–7 In addition, a low toxicity of the drug has been found in animals.8,9 Therefore eltanolone may prove to be a safe and potentially useful new anesthetic agent.

Because of the favorable actions on cerebral blood flow (CBF), oxygen consumption and intracranial pressure, althesin was suitable for use in neuroanesthetic practice,10–12 until its withdrawal. The close relation in chemical nature and pharmacodynamic profile of althesin and eltanlone may indicate similar effects on cerebral hemodynamics and metabolism.

The purpose of the present study was to evaluate the effects of eltanlone and its vehicle (as placebo) on CBF and cerebral metabolic rate for oxygen (CMRox) in healthy volunteers.

Materials and Methods

Eight healthy male volunteers with a mean age of 23 (range 20–25) yr participated in this randomized crossover study. They were within 10% of their ideal body

* Senior Registrar, Department of Anesthesiology, Bispebjerg Hospital.
† Senior Registrar, Department of Anesthesiology, Hvidovre Hospital.
‡ Registrar, Department of Anesthesiology, Bispebjerg Hospital.
§ Registrar, Department of Anesthesiology, Hvidovre Hospital.
∥ Consultant, Department of Anesthesiology, Bispebjerg Hospital.
¶ Consultant, Department of Anesthesiology, Hvidovre Hospital.

Received from the Department of Anesthesiology, Bispebjerg Hospital, University of Copenhagen, and the Department of Anesthesiology, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark. Accepted for publication May 20, 1994. Supported by a grant from Kabi Pharmacia.

Address reprint requests to Dr. Wolff: Department of Anesthesia, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
weight and had no history of previous anesthetic complications, allergy to drugs or alcohol abuse. The trial was conducted in accordance with the Helsinki II Declaration and approved by the local ethics committee. The experiment was explained to the subjects and informed consent obtained.

They were all in the fasting condition, completely rested and received no premedication before the study.

A radial artery was cannulated with a 20-G catheter for continuous monitoring of mean arterial blood pressure. The electrocardiogram also was recorded. In the contralateral arm the antecubital vein was cannulated for fluid and drug administration. A 16-G venous catheter was inserted with the tip in the internal jugular bulb. The correct position at the base of the skull was verified by radiography.

The subjects were then allowed to rest for 30 min in the supine position and received approximately 1,000 ml normal saline intravenously to compensate for preinvestigational fluid deprivation. They breathed air throughout the procedure and lay in the supine resting position with their eyes closed. Care was taken to reduce the noise level to a minimum.

Volunteers were studied in random order. During each of two sessions at least 1 week apart, each volunteer received an intravenous bolus dose of etanalone 0.6 mg/kg or an equal volume of vehicle. The injection rate was 0.2 ml·kg⁻¹·min⁻¹. The formulation of etanalone and its vehicle have been described in detail.²

Measurements of CBF and CMRO₂ were performed before injection of etanalone or vehicle to determine the baseline values. Two other sets of measurements were started 2 and 30 min after injection of the drug or the vehicle.

Measurements and Calculations

CBF was measured by the intravenous xenon 133 technique with the use of a ten-detector system with integrated computerized data processing (Novo Cerebrograph 10a, Novo Diagnostic Systems, Copenhagen, Denmark).⁵¹⁶ Clearance curves from the brain were recorded after injection of 10–20 mCi ¹³³Xe. Analysis of data was performed according to a biocompartmental model and with use of delayed-start fit time for reduction of the air passage artifact.¹⁵ A detector placed over the apex of the right lung was used to obtain data for correcting the effects of ¹³³Xe recirculation.

CBF was calculated as the initial slope index, defined as the decay constant from the early monoexponential part of the fitted clearance curve.¹⁶ CBF values were averaged for all detectors and expressed as milliliters per 100 g per minute, assuming a blood-brain partition coefficient of 1.0 g/l.

Arterial and jugular venous blood were sampled simultaneously after injection of ¹³³Xe at the time of each CBF measurement. Oxygen and carbon dioxide tensions and pH values were analyzed (ABL 3, Radiometer, Copenhagen, Denmark) and oxygen saturations and hemoglobin concentrations were measured (OSM 3 Hemoximeter, Radiometer).

The arteriovenous oxygen difference was calculated according to the formula

\[\text{AVDO}_2 = 1.39 \times \text{Hb} \times \text{S}_{O_2} (A - V) + 0.003 \times \text{P}_{O_2}(A - V) \]

where AVDO₂ = arteriovenous oxygen difference; Hb = hemoglobin concentration (volume percent); S₀₂ = oxygen saturation (percent); A = arterial value; V = venous value; and P₀₂ = oxygen tension (millimeters mercury). CMRO₂ was determined as the product of arteriovenous oxygen difference and CBF.

Statistics

All data are reported as means ± SD. The statistical test was a two-way analysis of variance for repeated measurements to detect significant differences between treatments (etanalone versus vehicle), influence of time, and interaction between treatment and time. Post hoc pairwise comparisons between the two treatments at different times were performed by Bonferroni's procedure when analysis of variance revealed statistical significance between treatments or significant interaction between treatment and time. In case of significant influence of time, a one-way repeated-measures analysis of variance was performed in the etanalone group followed by Dunnett's test for post hoc comparisons with the baseline values. Significance was assigned at \(P < 0.05 \).

Results

Figure 1 shows CBF and CMRO₂ before and 2 and 30 min after administration of etanalone or vehicle. The mean CBF decreased 34% from 64 (range 58–69) to 42 (30–48) ml·100 g⁻¹·min⁻¹ at 2 min after administration of etanalone and only 4% at 2 min after vehicle (\(P < 0.0001 \)). At 30 min CBF remained significantly less than either the baseline value (\(P < 0.0001 \)) or the value for vehicle (\(P < 0.01 \)).

Anesthesiology, V 81, No 3, Sep 1994
Venous bulb oxygen tension and arteriovenous oxygen difference did not differ significantly between the two groups (table 1). The calculated mean baseline value of CMRO₂ was 4.1 (range 3.7–4.7) ml·100 g⁻¹·min⁻¹, which decreased to 2.7 (1.5–3.4) ml·100 g⁻¹·min⁻¹ after administration of etanolone (P < 0.0001) whereas CMRO₂ did not change after administration of vehicle. At 30 min CMRO₂ was 3.7 (3.2–4.0), which was significant compared with the baseline value (P < 0.05) and compared with the corresponding value after vehicle administration (P < 0.05).

The CBF/CMRO₂ ratios before and 2 and 30 min after injection of etanolone were 15.8 ± 1.0, 15.5 ± 2.4 and 14.6 ± 1.1 respectively (n.s.). The corresponding values after injection of vehicle were 15.6 ± 3.2, 15.3 ± 2.6 and 15.5 ± 2.1 (n.s.). The between-group comparison also was statistically insignificant.

The mean arterial blood pressure decreased 7% after administration of etanolone (P < 0.05) (table 1). Only minor changes were seen after injection of vehicle.

Blood gas values are given in table 1. Arterial oxygen tension did not vary between the two groups at baseline but decreased significantly after administration of etanolone. The lowest value of arterial oxygen tension was 68 mmHg in one subject. No oxygen had to be administered, and oxygen tensions were normal within 30 min. A short period of hypoventilation was observed after induction with etanolone, as indicated by an increase in arterial carbon dioxide tension (P < 0.0001). The highest value for arterial carbon dioxide tension obtained at 2 min was 47 mmHg in one subject. Values at 30 min were normal. No changes in arterial carbon dioxide tension occurred after administration of vehicle.

The only adverse effects of etanolone were seen in one case during the recovery from anesthesia. Involuntary movements with increased tone in all the limbs were observed for a period of about 3 min. The subject had total amnesia for the event.

Discussion

Results from preliminary volunteer and clinical trials have shown that administration of an intravenous bolus dose of etanolone 0.5–0.6 mg/kg produce a state of anesthesia within approximately one min and with a duration of 7–15 min. Induction of anesthesia has been smooth and reliable although involuntary movements have been observed. A minor decrease in arterial blood pressure and a short period of hypoventilation have been registered. In summary, the pharmacodynamic properties of etanolone seemed to be similar to those of althesin. 5
Table 1. Mean Arterial Blood Pressure, Arterial P_{aCO_2}, Jugular Venous Bulb P_{vCO_2}, and Arteriovenous Oxygen Content Difference before (1) and at 2 (2) and 30 min (3) after an Intravenous Bolus Dose of 0.6 mg/kg Etanolaolone or an Equal Volume of the Vehicle in Eight Volunteers

<table>
<thead>
<tr>
<th></th>
<th>Etanolaolone</th>
<th></th>
<th>Vehicle</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>83 ± 6</td>
<td>77 ± 7*</td>
<td>77 ± 7*</td>
<td>83 ± 5</td>
<td>81 ± 4</td>
<td>84 ± 5</td>
</tr>
<tr>
<td>P_{aCO_2} (mmHg)</td>
<td>99 ± 13</td>
<td>80 ± 6†§</td>
<td>103 ± 7</td>
<td>98 ± 4</td>
<td>98 ± 5</td>
<td>100 ± 4</td>
</tr>
<tr>
<td>P_{vCO_2} (mmHg)</td>
<td>41 ± 2</td>
<td>44 ± 2†§</td>
<td>41 ± 2</td>
<td>41 ± 2</td>
<td>41 ± 2</td>
<td>41 ± 2</td>
</tr>
<tr>
<td>AVDO$_2$ (vol%)</td>
<td>34 ± 1</td>
<td>31 ± 4</td>
<td>32 ± 1</td>
<td>34 ± 4</td>
<td>33 ± 3</td>
<td>33 ± 2</td>
</tr>
</tbody>
</table>

Values are mean ± SD

* $P < 0.05$, †$P < 0.001$, ‡$P < 0.0001$ versus baseline value (1). ‡$P < 0.0001$ versus vehicle.

Preliminary pharmacokinetic studies have shown a terminal elimination half life of etanolaolone between 0.9 and 1.4 h, probably based on hepatic clearance. By using a three-compartment model a rapid distribution phase (T_{dss}, 0.3–2 min) followed by a β phase (T_{dss}, 12–29 min) and a terminal half-life between 1.2–3.5 h have been demonstrated.

The precise mechanism of action of steroid anesthetic agents has not been established. However, the central pharmacologic effects have been proposed to be mediated by enhancing the synaptic transmission of γ-aminobutyric acid at the receptor level.

In the present study we found a mean decrease of 34% (26–48%) in the measured values of CBF after injection of etanolaolone. The cerebral venous oxygen saturation did not change significantly. Consequently, a corresponding reduction in CMR$_{\text{O}_2}$ of a similar magnitude was calculated (17–59%) after administration of etanolaolone ($P < 0.0001$) whereas CMR$_{\text{O}_2}$ did not change significantly after injection of vehicle. At 30 min the mean CBF was 16% less than baseline ($P < 0.0001$), and the reduction in mean CMR$_{\text{O}_2}$ at that time was 10% ($P < 0.05$). Therefore, the main effect on cerebral circulation and metabolism of etanolaolone seemed to be of brief duration with a minor residual action after 30 min. The coupling of CBF and metabolism (CBF/CMR$_{\text{O}_2}$ ratio) was found to be preserved. This may indicate that the primary action of etanolaolone was a depression in cerebral metabolic oxygen consumption and a subsequent equivalent decrease in oxygen supply. Similar effects on CBF and CMR$_{\text{O}_2}$ have been demonstrated for althesin and other intravenous anesthetic agents and sedatives.

The cerebral vascular reactivity to changes in carbon dioxide tension was not evaluated in the present study. However, assuming a preserved carbon dioxide response, as observed with most other intravenous anesthetic agents, including althesin, the decrease in CBF would have been enhanced if values were corrected for the observed hypercapnia after administration of etanolaolone.

According to the protocol the subjects were left unstimulated during the trial. By observation, unconsciousness was attained within 70 s and lasted 9–17 min. At 30 min all volunteers were awake and oriented although most of the subjects were still drowsy at that time. The decrease in CMR$_{\text{O}_2}$ and CBF at 2 min with a minor residual effect at 30 min fully agreed with the observed clinical actions of etanolaolone and with the pharmacokinetic data.

A slight decrease in mean arterial blood pressure was observed after administration of etanolaolone, but in no case did it reach values below the generally accepted lower limit of cerebral autoregulation (60 mmHg) in normotensive individuals. Despite a significant decrease in arterial oxygen tension, observed in all subjects, this was unlikely to account for any change in CBF.

The intravenous Xe^{133} technique with the use of initial slope index have been shown to be a reliable and reproducible method of estimation CBF. However, although the index represents clearance from both the cerebral gray and white matter, it is dominated by the fast flow gray matter. Therefore, initial slope index mainly reflects CBF changes in these areas. The same applies to the calculation of CMR$_{\text{O}_2}$ and may give rise to a systematic error if the drug induced alterations mainly took place in the cerebral white matter regions. However, it seems unlikely that the parallel changes in CBF and CMR$_{\text{O}_2}$ predominantly should be located to the gray and white matter, respectively.
CEREBRAL VASCULAR AND METABOLIC EFFECTS OF ELTANOLONE

Based on the clinical actions and pharmacokinetic data one may anticipate that the cerebrovascular and metabolic effects were already extensive at 2 min after termination of eltanolone administration. Initial slope index was estimated at 30–90 s from the fitted 133Xe clearance curve. During this period it was assumed that the cerebral actions of eltanolone were approximately constant. These suppositions were in agreement with the onset of effects on CBF and CMRO$_2$ after an intravenous bolus dose of althesin in baboons.35

In conclusion, eltanolone was shown to have a depressant effect on cerebral oxygen consumption and blood flow. The ratio CBF/CMRO$_2$ remained unchanged, indicating a preserved coupling of flow and oxygen metabolism. Although the demonstrated cerebrovascular and metabolic properties of eltanolone are appropriate for use in neuroanaesthesia and intensive care, further investigations are required to establish the possible future role of eltanolone in clinical anesthetic practice including patients with neuropathologic conditions.

References

13. Larsen B, Christensen MS: A system for monitoring the CBF based on the Xenon-133 i.v. technique. CBF Bull 2:27–31, 1981