tention that sevoflurane is not biotransformed to a greater extent than enfurane simply is not viable.

Also, nothing was mentioned in the editorial about the other products of the biotransformation by cytochrome P450 of sevoflurane in vivo, namely hexaqufluoroisopropanol (HFIP) and the single carbon product that eventually results from the broken-off fluoromethoxy group of sevoflurane. Sevoflurane is unique compared to enfurane, isoflurane, and desflurane in that it contains a monofluorinated methoxy group rather than a difluoromethoxy group. The former by necessity undergoes a different mechanism of biotransformation after initial P450 metabolic attack.

The frenetic push toward convincing us that all this fluoride (and stoichiometric amounts of HFIP plus single carbon fragments) is not clinically important, is an attempt to obfuscate the fact that sevoflurane is an old anesthetic that moves us back in the direction of the heavily biotransformed agents of the past. How long did it take to report methoxyflurane nephrotoxicity after its introduction to clinical practice in 1959? Seven years. How many millions of anesthetics had been given with it by then before that particular toxicity became apparent? How long did it take before (most of us) recognized the existence of halothane-related hepatotoxicity? Are these toxicities related to biotransformation? Of course. Can we remotely predict these toxicities? No. Our recent strategy has been to develop volatile agents that undergo the lowest possible biotransformation, a strategy that makes sense.

The notion that somehow sevoflurane is no longer important in nephrotoxicity, to which Brown and Kharasch et al. have attached so much importance, obscures a more basic and important fact about this drug, which soon may be given to millions of Americans. Sevoflurane is heavily biotransformed. The editorialist’s aversion to “shibboleths and jigsaw puzzles” now being discussed, the “fluoride issue” is not resolved.

Kharasch et al. point out that inorganic fluoride is a nephrotoxin and cite the example that deuterization of methoxyflurane, which decreases methoxyflurane P450-dependent metabolism and fluoride release, diminishes renal toxicity. Despite their own citation, these authors attempted to dissociate serum fluoride concentrations from renal toxicity, by concluding that “neither peak systemic fluoride concentrations nor duration of fluoride increase alone can be applied nonspecifically to all anesthetics to explain or predict nephrotoxicity. They imply that there may be some other metabolite or unknown metabolic consequence of methoxyflurane biotransformation that causes renal toxicity. After many years of methoxyflurane study, none has been found. Further, they suggest, without proposing any mechanism, that the small amount of fluoride produced in the kidney is relevant to nephrotoxicity, whereas the large amount of serum fluoride that passes through the kidney for excretion is irrelevant.

We moved steadfastly, after the first fluorocarbon anesthetics were introduced, toward agents with less biotransformation, for sound toxicologic reasons. Sevoflurane, which was rejected by Baxter-Travenol and Anaquest (Ohmeda) for clinical development, is a step backward, despite the likelihood that it will have desirable clinical characteristics.

John H. Tinker, M.D.
Professor and Head
Max T. Baker, Ph.D.
Associate Professor
Department of Anesthesia
University of Iowa
College of Medicine
200 Hawkins Drive
Iowa City, Iowa 52242-1009

References


(Accepted for publication April 29, 1995.)

In Reply.—My editorial was focused only on my thoughts concerning the article by Kharasch et al. in the same issue. The toxicity of compound A, hexaqufluoroisopropanol, toxicity, and other aspects of sevoflurane, both political and scientific, were not discussed. The editorial was strictly confined to commentaries of the novel concept that local renal production and hence high renal concentrations of fluoride ion may be of greater importance in renal toxicity than inhaled fluoride production as measured by the plasma fluoride concentration. Contrary to Tinker and Baker’s contention, neither my editorial (nor Kharasch et al.’s original paper) discounted the nephrotoxic potential of fluoride ions. The issue was whether renal or hepatic production of fluoride was the more important vector of nephrotoxicity with inhalation anesthetics. The fact remains that several publications have documented plasma fluoride concentrations well in excess of 50 μmol/l, whether from sevoflurane, enfurane, isoflurane, or fluoride ion intoxication, without evidence of renal toxicity.

Tinker and Baker refer repeatedly to “heavy biotransformation.” Let me supply the facts. Eight percent of the enfurane dose and 3–5% of the sevoflurane dose are metabolized. Tinker and Baker are
CORRESPONDENCE

correct that some anesthetic toxicity is due to biotransformation. I am not aware of their contrapositive argument that all biotransformation results in toxicity. No clinical pharmacologist believes this either. It is unfortunate that Tinker and Baker are prepared to pontificate with the statement that sevoflurane is "a step backward," a statement obviously made without access to the facts established with the clinical development of sevoflurane.

I again propose that the major hypothesis that nephrotoxicity is agent-specific, occurs primarily because of intracellular fluoride ion production, and is not primarily dependent on extracellular fluoride ion concentration is impressive. It underscores the rule that medicine can never rest on its laurels1, minds should remain open, vigilance should be maintained, and new data should be continually sought.

Barnell R. Brown, Jr., M.D., Ph.D., F.R.C.A.
Professor Emeritus
Department of Anesthesiology
University of Arizona
College of Medicine
Tucson, Arizona 85724

Anesthesiology
Vol 83, No 1, Jul 1995

References

(Accepted for publication April 29, 1995)

In Reply—Tinker and Baker disagree with our analysis that "neither peak systemic fluoride concentrations nor duration of fluoride increase alone can be applied nonspecifically to all anesthetics to explain or predict nephrotoxicity." We believe the data support our statement: Enfuran anesthesia in isoniazid-treated humans resulted in peak plasma fluoride concentrations exceeding 50 μmol (as great as 130 μmol), but there was no evidence of renal dysfunction. Prolonged isoflurane anesthesia resulted in peak plasma fluoride concentrations exceeding 50 μmol for 2-7 days but had no deleterious effect on any measure of renal function. Prolonged isoflurane sedation resulted in peak plasma fluoride concentrations exceeding 50 μmol (as great as 93 μmol) but no adverse effects on renal function. During prolonged isoflurane sedation, in which fluoride concentrations remained increased for as long as 52 days, there were no significant changes in renal function. Sevoflurane anesthesia resulted in peak plasma fluoride concentrations exceeding 50 μmol, but no adverse effects on renal function have been observed to date. In contrast, enfuran anesthesia can result in significantly diminished urine concentrating ability at plasma fluoride concentrations less than 50 μmol. Thus, the methoxyflurane experience does not appear to apply equally to all anesthetics.

Tinker and Baker attribute to us the notion that serum fluoride is no longer important in nephrotoxicity. We have made no such assertion.

Tinker and Baker claim that we suggest, without proposing any mechanism, that the small amount of fluoride produced in the kidney is relevant to nephrotoxicity, whereas the large amount of serum fluoride that passes through the kidney for excretion is irrelevant. There is no such statement in our paper, and furthermore, there are no data on which to argue the point. Renal parenchymal fluoride concentrations in vitro resulting from either renal anesthetic metabolism or tubular fluoride reabsorption have never been measured with methoxyflurane or any other volatile agent. Tinker and Baker are correct in that we proposed no mechanisms of nephrotoxicity. We did not propose any mechanisms of nephrotoxicity because we did not study nephrotoxicity—we studied metabolism.

Tinker and Baker reject the potential that a metabolite or metabolic consequence of methoxyflurane biotransformation other than plasma fluoride may contribute to nephrotoxicity because, "after many years of methoxyflurane study, none has been found." However, there has been scant study of methoxyflurane nephrotoxicity in the last two decades. The absence of proof is not the proof of absence. Indeed, in one of only two papers published since 1980 which even remotely address this issue, the use of analytical methodologies not available during the methoxyflurane era led to a reevaluation of methoxyflurane hepatotoxic metabolism.15

Metoxyflurane nephrotoxicity is intimately and unquestionably related to biotransformation. Methoxyflurane is biotransformed to a number of metabolites. Identification of fluoride as the nephrotoxic metabolite was based on associations between serum fluoride concentration and toxicity in humans: on correlations between changes in metabolism, serum fluoride concentrations, and nephrotoxicity in rats, and on the ability of fluoride (at unknown serum concentrations) to cause toxicity in animals. However, data in humans establishing a causal link between increased serum fluoride concentrations and nephrotoxicity of methoxyflurane or any other anesthetic has never been published. The clinical observations about enfuran, isoflurane, and sevoflurane cited above are pertinent. They call into question the appropriateness of applying a fluoride hypothesis to methoxyflurane nephrotoxicity nonselectively.