CASE REPORTS

to despropionyl norfentanyl, but this process may be impaired in patients with significant hepatic dysfunction. A literature review located a single brief case report of fentanyl-induced delirium caused by intravenous fentanyl. Although it is tempting to associate our patient's symptoms with a derangement in the metabolism or elimination of fentanyl or its metabolites, there is not sufficient information available to reach any valid conclusions, and to do so would be conjecture.

Clinicians who prescribe transdermal fentanyl should be aware of this potential complication. If central nervous system excitatory symptoms develop in a patient being treated with transdermal fentanyl, after other causes of delirium have been ruled out, consideration should be given to removing the patch and observing the patient while maintaining appropriate monitoring. An equianalgesic regimen of another opioid should be started to provide analgesia and prevent withdrawal.

References

2. Bailey PL, Stanley TH: Package inserts and other dosage guidelines are especially useful with new analogesics and new analgesic delivery systems. Anesth Analg 75:873–875, 1992

Anesthesiology 83:871–874, 1995
© 1995 American Society of Anesthesiologists, Inc.
Lippincott-Raven Publishers

Intraabdominal Fire during Laparoscopic Cholecystectomy

Philip E. Greilich, M.D. * Nancy B. Greilich, M.D., † Edward G. Froelich, M.D. ‡

* Clinical Assistant Professor of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland. Staff Anesthesiologist, Walter Reed Army Medical Center, Washington, D.C.
† Senior Resident, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Hospital-Baltimore, Maryland
‡ Staff Anesthesiologist, Anesthesia and Operative Service, Monarch Army Community Hospital, Columbia, South Carolina

Received from Walter Reed Army Medical Center, Washington, D.C. Submitted for publication May 22, 1995. Accepted for publication May 27, 1995. The opinions expressed herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of the Army or the Department of Defense.

Address correspondence to Dr. Greilich: Anesthesia and Pain Management (112A), Dallas Veterans Affairs Medical Center, 4500 South Lancaster Road, Dallas, Texas 75216.

Key words: Complications: carbon dioxide tanks, fire; laparoscopic surgery

LAPAROSCOPIC surgery for elective cholecystectomy has undergone rapid acceptance since it initially was described in 1988.1–4 Complications unique to laparoscopic surgery result mainly from the cardiopulmonary impact of creating a pneumoperitoneum and choice of insufflating gas.5–6 Overall morbidity rates of 2–5% for laparoscopic cholecystectomy compare favorably to the 4–8% documented with open procedures.7–9 We report a case of intraabdominal fire secondary to insufflating the incorrect concentration of carbon dioxide gas during a laparoscopic cholecystectomy.

Anesthesiology, V 83, No 4, Oct 1995
Case Report

This case involves a 62-yr-old, 114-kg, 150-cm man who presented with resolving acute pancreatitis and gallstones for elective laparoscopic cholecystectomy. Physical examination was significant for obesity and dullness to percussion at both lung bases. After induction of anesthesia and tracheal intubation, anesthesia and neuromuscular blockade were maintained with 0.5–1% isoflurane in 40% O₂ in nitrogen and vecuronium as needed to maintain two twitches in response to train-of-four stimulation.

Pneumoperitoneum was achieved with a Storz Electronic Laparotrolley (Karl Storz Endoscopy-America, Culver City, CA), which was connected to the carbon dioxide tank by a collar specifically pin-indexed for carbon dioxide. The necessary laparoscopic equipment was maintained on a metal cart (Medi-Mech. The Dalles, OR). The carbon dioxide cylinder was located behind the laparoscopic cart, in a metal jacketed well that concealed the lower 90% of the tank. Approximately 2 h into what had been an uneventful surgery, a 2-cm “flare” arising from the tip of the electrocautery unit was visualized on the video monitor. Seconds later, as the electrocautery was being rapidly withdrawn through the trocar, the entire video screen turned orange-red and the abdominal wall was transilluminated. The presumed fire lasted approximately 2 s. Direct visual inspection of the electrocautery tip and trocar (fig. 1) revealed that both of these instruments had undergone combustion. The abdomen was immediately opened through a right subcostal incision. Visual inspection of the abdomen revealed no evidence of thermal injury with the exception of minor charring of the falciform ligament. Gross examination of liver, stomach, pancreas, and intestines was unremarkable. The gallbladder was removed, the peritoneal cavity lavaged with 3 liters of normal saline irrigation, and the abdomen closed in standard two-layer fashion. The remaining intraoperative and postanesthesia course proceeded without incident. The patient was discharged from the hospital on the 9th postoperative day without further complication.

After the incision, the carbon dioxide cylinder was removed from its protective metal jacket mounted on the back of the insufflator cart. Close inspection revealed a 3 cm-wide green stripe at the top of the tank, indicating the presence of oxygen (fig. 2). The remainder of the cylinder was filled with 86% O₂. The lack of a tamper seal on the carbon dioxide cylinder raised concerns in the gas. The gas was a mixture of 14% CO₂ and 86% O₂. The gas supply to the cart was determined to be supplied by a cylinder with 14% CO₂, with oxygen. The color of the gas (green) confirmed the presence of oxygen. Pin-index systems for both tanks are identical.

Fig. 2. Comparison of 100% CO₂ tank (left) and 14% CO₂ tank (right). Note green band at the top of the cylinder on the right, denoting the presence of oxygen. Pin-index systems for both tanks are identical.

Discussion

Several reports in the literature have described complications during laparoscopy as the result of either pneumoperitoneum or insufflation gas. The first described case of an abdominal explosion was reported in 1983 when Ferver used N₂O as the insufflation gas. The use of carbon dioxide was not recommended at that time because of both fatal and nonfatal complications related to laparoscopic surgery. Current recommendations are that the use of 100% CO₂ should be avoided because of the potential for explosion.

Fig. 1. Charred upper trocar, which was removed immediately from the peritoneal cavity after transillumination of the abdomen. An uncharred lower trocar is displayed for comparison.

Anesthesiology, V 85, No 4, Oct 1995
PIN-INDEXED YOKE, PINS 1-6
STANDARD MEDICAL CYLINDER VALVE YOKE CONNECTION FOR
PRESSURES UP TO 3,000 psig (20 680 kPa) FOR
Carbon Dioxide
Carbon Dioxide & Oxygen Mixtures (CO₂ over 7%)

<table>
<thead>
<tr>
<th>DIMENSIONS</th>
<th>INCHES</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH</td>
<td>0.487</td>
<td>12.4 ± 0.07</td>
</tr>
<tr>
<td>PP</td>
<td>0.281</td>
<td>7.15 ± 0.15</td>
</tr>
<tr>
<td>OD</td>
<td>0.562</td>
<td>14.3 ± 0.07</td>
</tr>
</tbody>
</table>

Normal mixture concentration, normal mixture tolerances are allowable

Fig. 3. Diagram of the Compressed Gas Association (CGA) specifications for tanks containing >7% CO₂ (CGA 940). The diagram on the right specifies the dimensions of the inlet valve located on the carbon dioxide collar. The diagram on the left specifies the dimensions of the outlet valve located on the carbon dioxide cylinder yolk.

The remainder of the cylinder was gray, indicating the tank contained carbon dioxide. Examination of the concealed label on the carbon dioxide tank revealed that the gas was a mixture of 14% CO₂ and 86% O₂. A telephone call to the gas supply company revealed that any cylinder with a carbon dioxide content of greater than 7% is fitted with a standard pin-index for carbon dioxide (fig. 2). Comparison of our tank, which contained 14% CO₂, with another containing 100% CO₂ (fig. 2) confirmed that the pin-indexes were identical. None of the involved operating room staff were aware of the potential for this type of error.

Discussion

Several reports in the literature document major complications during laparoscopic surgery that were the result of either pneumoperitoneum or the insufflating gas.\(^{10-11}\) The first documented case of intraabdominal explosion was a nonfatal event that occurred in 1933 when Ferver used 100% O₂ as the insufflating gas.\(^\text{10}\) The use of carbon dioxide has been associated with both fatal and nonfatal injuries sustained during laparoscopic surgery.\(^\text{11-13}\) Current surgical practice is to use 100% CO₂, because it is noncombustible and thus will not create an explosion should the electrocautery generate a spark or ignite bowel gas (methane/hydrogen).\(^\text{15}\) Diagnostic endoscopists prefer nitrous oxide, because it is better tolerated (less peritoneal irritation) in their awake patients and because they do not use electrocautery.

Several industry standards have been written and adopted to prevent the use of gases other than 100% CO₂ for laparoscopic surgery. In addition, standard operating procedure at our institution only permits the placement of 100% CO₂ cylinders in our operating theater. Gas cylinders with a mixture of carbon dioxide and oxygen come from the distributor with a small green stripe at the top (fig. 2), indicating the presence of oxygen. The distributor also provides a large centrally placed label on the tank identifying the specific gas mixture within. As a further precaution, the gas insufflator collar uses the Compressed Gas Association (CGA) pin-index system, which is specific for carbon dioxide (CGA 940) concentrations greater than 7% (fig. 3). Operating room support personnel (nurses and technicians) are responsible for transporting the carbon dioxide cylinders from the storage area, mounting them on the laparoscopic carts and connecting them to the insufflating device.

Insufflation of this patient’s peritoneal cavity with a gas mixture containing less than 100% CO₂ illustrates that the current safety features are not foolproof. Human error permitted a tank with a carbon dioxide/oxygen mixture into our operating theater. A member of the operating room support personnel mistakenly placed the incorrect cylinder into a metal jacket, concealing the tank’s centrally placed label. This left only the thin green stripe at the top of the tank to warn...
members of the operating room staff of the presence of oxygen. Finally, use of the current medical gas pin-index system, which does not distinguish tanks containing 100% CO₂ from those containing carbon dioxide mixtures between 7% and 99% permitted us to connect a tank that contained 86% O₂ to the insufflation device.

The presence of a pin-index configuration specific for 100% CO₂ would have prevented our case of intraabdominal fire. The absence of documentation in the literature of similar disasters infers that the human error made in our case represents a rare breach in existing preventive measures. However, as the number of laparoscopic procedures approaches 1,000,000 per year, the likelihood of an event such as the one we report here will increase. Until a 100% CO₂-specific pin-index fitting or appropriate safety mechanism is designed, avoidance of an intraabdominal fire relies solely on the vigilance of informed personnel. Review of this case by our quality improvement program resulted in in-service training of all operating room personnel (physicians, nurses, technicians) to alert them of this potential hazard. In addition, a more stringent check-in procedure for gas cylinders used in the operating theater was established. We report this case of intraabdominal fire during laparoscopic cholecystectomy to alert the anesthesiology community of its potential to occur and to prompt efforts to eliminate this rare but potentially devastating complication.

References

Anesthesiology, V 83, No 4, Oct 1995