Anesthesiology
1996; 84:259-40
© 1996 American Society of Anesthesiologists, Inc.
Lippincott-Raven Publishers

In Reply.—I appreciate the interest of Butler and Kenny in our method of preoxygenation.1 We did not intend to imply that this method alone would achieve an optimal alveolar oxygen fraction. However, in patients who refuse placement of a mask on their face, the method we describe is superior to no preoxygenation.

Robert B. Keifer, M.D.
Resident, Department of Anesthesiology
Box 238, Health Sciences Center

Reference
(Accepted for publication September 29, 1995.)

Anesthesiology
1996; 84:259-40
© 1996 American Society of Anesthesiologists, Inc.
Lippincott-Raven Publishers

Placement of an Endotracheal Device Via the Laryngeal Mask Airway in a Patient with Tracheal Stenosis

To the Editor.—Treatment of tracheal stenosis by means of the insertion of endotracheal prosthesis through the endotracheal tube (ETT) is difficult. A patient with tracheal stenosis in whom laryngeal mask airway (LMA) was successfully used to place a metal-stent prosthesis is reported.

A 39-yr-old woman, height 156 cm, weight 56 kg, with idiopathic subglottic tracheal stenosis and vocal cords synchiae underwent several surgical interventions with immediate but short-term clinical improvement. An expandable metal tracheal stent was inserted via an ETT (size 7.5, Mallinckrodt) and fluoroscopic monitoring under general anesthesia, but a computed tomographic scan revealed distal displacement 48 h after the insertion, producing increased respiratory symptoms. A second endoprosthesis was inserted, this time via an LMA (Fig. 1). After preoxygenation, anesthesia was induced with propofol (2.5 mg/kg) and fentanyl (20 mg), and a size 4 LMA was inserted. Anesthesia was maintained with a mixture of 50% air/oxygen and an infusion of propofol (0.16–0.11 mg·kg⁻¹·min⁻¹). The extent of the stenosis was evaluated using direct visualization through a flexible fiberoptic scope (Olympus LF-1, Tokyo, Japan) aided by fluoroscopic monitoring; radioopaque marks were drawn on the neck at the level of the superior and inferior borders of the stenosis. The leader catheter of the stent was introduced through the LMA and was directed to the stenosed area by direct visualization aligned with the radioopaque skin markers. Once in position, the stent was advanced to the stenotic area, and the leader was withdrawn. To facilitate the handling of the instruments, the aperture bars of the LMA were removed before its positioning.

Fig. 1. Prosthesis and fiberoptic scope through laryngeal mask airway.

Juan C. Catalá, M.D.
Staff Anesthesiologist
Hospital General Universitario de Valencia
Universidad de Valencia

Francisco García Pedrajas, M.D.
Anesthesiologist
Associate Professor of Anesthesiology
José Carrera, M.D.
Anesthesiologist
Associate Professor of Anesthesiology
Pablo Monedero, M.D.
Anesthesiologist
Associate Professor of Anesthesiology


Anesthesiology, V 84, No 1, Jan 1996

University of Virginia
Charlottesville, Virginia 22908