Pancreatitis after Propofol Administration: Is There a Relationship?

To the Editor — In the past 8 months at the hospital where I practice anesthesia, pancreatitis has developed in four patients after surgery. None of these cases involved abdominal surgery. In two of the patients, who were relatively healthy and nonalcoholic, aged 58 and 77 yr, respectively, respiratory distress syndrome developed after the onset of pancreatitis, and the patients died. The other two patients experienced several weeks of abdominal discomfort — nausea and vomiting were diagnosed as having pancreatitis, and subsequently recovered.

These patients had in common induction of anesthesia with propofol followed by intravenous succinylcholine before tracheal intubation and desflurane for maintenance of anesthesia. I am not suggesting that these cases of pancreatitis were caused by any single drug or combination of drugs. However, I believe that anesthesiologists should be aware of these case reports, and should they treat any cases of pancreatitis, should report them to the Food and Drug Administration.

Thomas W. Wingfield, M.D.
President
Gaston Anesthesia Associates, P.A.
P.O. Box 12845
Gastonia, North Carolina 28052

(Accepted for publication August 17, 1995.)

In Reply — Zeneca has evaluated all cases of pancreatitis reported in temporal association with the administration of Diprivan. As a result of this evaluation and a review of the scientific relationship between lipids and acute pancreatitis, we do not believe a causal relationship between Diprivan and the occurrence of acute pancreatitis is likely.

Although Wingfield mentions four cases of pancreatitis, he reported to Zeneca three cases of postoperative pancreatitis and indicated in his letter to Anesthesiology that the Food and Drug Administration (FDA) had ‘‘several reports’’ of acute pancreatitis associated with Diprivan. In discussion with the FDA, we determined that the total number of spontaneous reports of pancreatitis is eight. Three cases were from the intensive care unit, and five were postoperative. The cases from the intensive care unit were found to have contributory medical histories of biliary stones or alcohol abuse, two of the most common causes of pancreatitis. Of the five reports of postoperative pancreatitis, three were from Wingfield, and the others were from different sources. The estimated exposure to Diprivan is approximately 40 million anesthesia patients in the United States.

We were afforded the opportunity to visit Gastonia Hospital on April 6, 1995. Physicians from Zeneca reviewed the charts and records of the patients reported by Wingfield. We found that the patient undergoing hip replacement had a history of bilateral pedal edema, anemia, and increased triglycerides and underwent a 4-h procedure with 1,500 ml of blood loss and hemodynamic instability and, postoperatively, oliguric renal failure, metabolic acidosis, and renal dialysis within the first 24 h. The other patient, aged 77 yr, had an unresolved upper respiratory infection for 1 month before surgery and underwent a 45-min anesthetic procedure with lumpectomy and axillary node dissection. Both patients denied a history of alcohol use.

A feature common to all of these postoperative pancreatitis cases is that Diprivan was used only for induction of anesthesia and not maintenance of anesthesia. In 3,324 anesthesia patients in our clinical trial database, up to 9,900 mg Diprivan was administered to a single patient, and no cases of pancreatitis were reported. Long-term maintenance of anesthesia, with much higher lipid dosages, has not been associated with the development of pancreatitis in our clinical trial database or in the more than 5,000 Diprivan articles in the literature. Thus, acute postoperative pancreatitis seen after Diprivan induction dosages of 100–150 mg seems unlikely to be causally related to Diprivan.

The relationship between acute pancreatitis and lipid administration has been shown to be dose dependent, requiring the occurrence of high lipid plasma levels exceeding 30 mg/dl or 1,000–2,000 mg/dl. These plasma concentrations of triglycerides were not achieved after a single bolus injection of Diprivan (3.1 mg/kg), when triglyceride concentrations changed from a baseline of 1.2 to 1.5 mmol/1.5 min after injection. Three data lead us to conclude that a causal relationship between Diprivan and the reported cases of postoperative pancreatitis after bolus induction dosages is unlikely. Pancreatitis is not commonly
observed after anesthesia for nonabdominal procedures. The anesthesia literature has only a few relevant articles discussing the occurrence of pancreatitis in association with the administration of narcotics and occasionally with cardiopulmonary bypass procedures. Continued study and monitoring of anesthesia patients will be necessary to better understand the causes of this serious postoperative event. As in the past, Zeneca will continue to monitor adverse events reported in temporal relationship with the administration of Diprivan, including reports of pancreatitis.

David B. Goodale, D.D.S., Ph.D.
Associate Director of Anesthestia
Kasia Suljaga-Petchel, M.D.
Director, Product Safety and Pharmacovigilence
Clinical and Medical Affairs
Zeneca Pharmaceuticals
Wilmington, Delaware 19897-2200

References


(Accepted for publication August 17, 1995.)

Payment for Routine Postoperative Patient-controlled Analgesia

To the Editor—Recently Mackey et al.1 faulted the Health Care Financing Administration (HCFA) Policy for not reimbursing anesthesiologists for postoperative patient-controlled analgesia (PCA), thereby impeding optimum postoperative pain management.

Their comment suggesting that postoperative pain management has been poorly managed in the past seems correct. Their equating the risks of postoperative epidural analgesia with PCA seems to be exaggeration. However, that is incidental.

Looked at from the perspective of HCFA and the public, who ultimately pay health-care costs, routinely reimbursing anesthesiologists for PCA postoperative pain management adds another level of costs to health care. Additionally, it tends to add to the fragmentation of individuals; patients are too often seen as collections of anatomic parts or functions. It would be better for surgeons and patients if routine postoperative pain were not seen as a separate symptom needing treatment by an anesthesiologist.

We anesthesiologists must become more efficient and work more closely with our surgical colleagues. Health-care money spent on our inefficiency will not be available in the future for higher priorities, such as research and new technology.

Patients deserve empathetic and compassionate relief of postoperative pain. It may not need to be optimum, but it should be safe and effective. PCA can be a valuable tool for this; we can help by giving our surgical colleagues practical information on using and monitoring the safety and effectiveness of PCA. Once we have done this, we will have a reasonable defense for our charges, as consultants in the special circumstances that Mackey et al. refer to, that the HCFA policy allows.

James E. Waun, M.D.
4256 Sugar Maple
Okemos, Michigan 48864-3225

Reference


(Accepted for publication September 28, 1995.)