niquet or blood pressure cuff on the other, and observe both feet. After administration of 1 mg/kg succinylcholine, the nerve is stimulated at a rate of one impulse per second using a supramaximal stimulus. When there is complete abolition of response, the stimulus for the electroconvulsive therapy is applied.

The foot as the site of nerve stimulation has the added advantage that it is less likely to be crowded with other devices (armbands, armboards, intravenous tubing or catheters, cables for pulse oximeters) than is the wrist.

Susan E. Dorsch, M.D.
Department of Anesthesiology
St. Vincent's Medical Center
Jacksonville, Florida 32204

Jerry A. Dorsch, M.D.
Mayo Clinic, Jacksonville
Jacksonville, Florida 32224

References


(Accepted for publication August 8, 1994.)

Modifying the Needle Guide of the Site Rite Enhances Performance in Pediatric Patients

To the Editor:—The efficiency of using ultrasonically guided cannulation of the internal jugular vein in adults using the Site Rite by Dymax Corporation is well established. The Site II is a two-dimensional echo with two depths of fields, 2 and 4 cm. This version of the machine is optimal for pediatric patients and can be transported in a briefcase-size carrying case. For inserting central venous catheters, a small echo probe is placed inside a sterile sheath. A sterile needle guide is attached to the outside of the probe, and then a needle can be placed under direct echo guidance into the vessel beneath the skin. The needle guide that is supplied by the manufacturer is designed to be used with an 18-G needle that is at least 3.5 cm long. It then intersects with the echo beam at 1.5 cm beneath the skin.

This large-size needle is inappropriate for small pediatric patients. In pediatric patients, the vessel often is cannulated first with a 22-G, 2.2-cm intravenous catheter. These catheters are too short to intersect with the echo beam while remaining in the standard needle guide. The consequence of pulling the needle out of the needle guide during insertion is that the needle will go less deep and may miss the vessel to be cannulated. The needle guide is modified by cutting the top of the guide as shown in figure 1. The 22-G intravenous catheter then can be inserted so that it will intersect the vessel at the proper depth while remaining in the needle guide. This modification, which allows the catheter to remain in the guide, has enhanced the success rate for cannulating central veins in small patients.

David A. Rosen, M.D.
Professor of Anesthesia and Pediatrics

Kathleen R. Rosen, M.D.
Associate Professor

Department of Anesthesia and Pediatrics
West Virginia University
P.O. Box 9134
Morgantown, West Virginia 26506-9134

Reference


(Accepted for publication August 9, 1994.)

Anesthesiology, V 81, No 5, Nov 1994