Nitric Oxide Reduces Pulmonary Hypertension during Hepatic Transplantation

M. Susan Mandell, Ph.D., M.D., James Duke, M.D.

AS orthotopic liver transplantation is used more often as accepted therapy for end-stage liver disease (ESLD), pulmonary hypertension as an associated complication will occur with increasing frequency. The optimal therapy has not been determined, and such patients continue to have a high rate of mortality and morbidity.1-4 An emerging and promising pulmonary vasodilator is the inhaled gas nitric oxide.5 We report on the use of nitric oxide in the treatment of pulmonary hypertension during liver transplantation.

Case Report

A 24-yr-old woman was referred for orthotopic liver transplantation. She had ESLD and portal hypertension due to cryptogenic cirrhosis. Approximately 1 yr before transplantation, the patient required repeated sclerosis of esophageal varices to control gastrointestinal bleeding. Because sclerosis failed to control the bleeding, she underwent splenorenal shunting. During surgery, pulmonary artery pressures ranged from 76 to 96 mmHg systolic (normal 15–30) and 45 to 62 mmHg diastolic (normal 0–12). Otherwise the patient was hemodynamically stable. Because of her increased pulmonary artery pressures, elective cardiac catheterization was performed postoperatively (table 1).

In the months following her splenorenal shunt, progressive hepatic failure developed, manifested by fatigue, ascites, and hepatic encephalopathy, which was responsive to medical management. Subsequently she underwent a multidisciplinary assessment for orthotopic liver transplantation.

At the time of evaluation, the patient was alert and ambulatory, though appearing cachectic and chronically ill. She had no symptoms of respiratory or cardiac disease. Her main complaints were of increasing abdominal girth and pruritus. Cardiac examination revealed a visible and palpable impulse associated with a thrill in the left second intercostal space, consistent with expansion of the main pulmonary artery. A III/VI holosystolic murmur was present at the left lower sternal border, which increased on inspiration. Accompanying laboratory results included a hemoglobin of 9.7 g/dl (normal 13.5–16.7), hematocrit 32% (normal 40–49), platelets 118,000 mm−2 (normal 150–400 × 105), prothrombin time 13.5 s (normal 9.7–12.1), partial thromboplastin time 36.4 s (normal 23.3–33.8), and antithrombin III level 31% (normal 70–120). The albumin was 3.1 g/dl, total protein 5.9 g/dl, and total bilirubin 1.1 mg/dl. Creatinine was 0.7 mg/dl and blood urea nitrogen 7 mg/dl. The electrolytes were within normal limits except for a bicarbonate of 17 mmol/l. Arterial blood gases during room air breathing were: pH 7.44, arterial carbon dioxide tension 28 mmHg, and arterial oxygen tension 66 mmHg. Pulmonary function tests were within 20% of predicted except for a decreased diffusing capacity of 50%. Distal pruning of the pulmonary vessels was observed on chest x-ray.

The electrocardiogram showed a vertical axis, early R wave progression, and anterior ST-T wave changes consistent with right ventricular strain. An enlarged right atrium and ventricle with mild tricuspid regurgitation were observed on echocardiogram. Right ventricular ejection fraction was estimated to be 31%, and pulmonary hypertension was stated to be moderate. Results of a multigated acquisition scan indicated right ventricular hypokinesis with an ejection fraction of 30%. Left ventricular size and function were normal. A ventilation-perfusion scan was indicated as indeterminate for pulmonary emboli, and no embol was demonstrated by subsequent angiography.

Cardiac catheterization was repeated during transplant assessment. There were no significant changes in pulmonary or intracardiac pressures from the previous catheterization (table 1). To determine pulmonary vasoreactivity, a prostacyclin challenge was performed starting at 0.5 ng·kg−1·min−1. Testing was discontinued at 2.5 ng·kg−1·min−1 because of flushing, nausea, and abdominal pain. Despite early termination of testing, a 24% decrease in pulmonary vascular resistance with a 13% decrease in systemic vascular resistance was observed. Increasing oxygen concentrations also were administered to assess a vasoreactive response, but none was observed. Because of the stability of her pulmonary artery pressures and selective vasodilator response to prostacyclin, the patient was considered an acceptable but high-risk transplant candidate.

Five months after transplant evaluation, a donor organ became available. Cardiac catheterization was performed immediately before surgery. Significant increases in pulmonary artery and right ventricular pressures were noted compared to prior catheterizations (table 1). Cardiac output remained stable.

After insertion of an oximetric pulmonary artery catheter and right and left 20-G radial arterial catheters, anesthesia was induced with...

Received from the Department of Anesthesiology, University of Colorado Health Sciences Center, Denver, Colorado. Accepted for publication August 9, 1994.

Address reprint requests to Dr. Mandell: Department of Anesthesiology, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Campus Box B113, Denver, Colorado 80262.

Key words: Liver transplantation. Nitric oxide. Pulmonary hypertension.

Anesthesiology, V 81, No 6, Dec 1994
CASE REPORTS

Table 1. Cardiac Catheterization Data

<table>
<thead>
<tr>
<th>Event</th>
<th>12 Months before Transplantation</th>
<th>0</th>
<th>12 Months after Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spleenorenal shunt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood pressure (mean) (mmHg)</td>
<td>124/64 (84)</td>
<td>101/61 (74)</td>
<td>100/65 (76)</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>77</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>Cardiac output (L/min)</td>
<td>7.5</td>
<td>6.8</td>
<td>7.1</td>
</tr>
<tr>
<td>Right atrial pressure (mmHg)</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Right ventricular pressure (mmHg)</td>
<td>60/5</td>
<td>67/1</td>
<td>91/11</td>
</tr>
<tr>
<td>Pulmonary artery pressure (mean) (mmHg)</td>
<td>60/30 (940)</td>
<td>63/26 (43)</td>
<td>86/35 (56)</td>
</tr>
<tr>
<td>Pulmonary wedge pressure (mmHg)</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Systemic vascular resistance (dyne.s.cm⁻²)</td>
<td>864</td>
<td>811</td>
<td>788</td>
</tr>
<tr>
<td>Pulmonary vascular resistance (dyne.s.cm⁻²)</td>
<td>384</td>
<td>435</td>
<td>585</td>
</tr>
</tbody>
</table>

250 mg sodium thiopental. After tracheal intubation facilitated by 100 mg succinylcholine, relaxation was supplemented with 10 mg doxacurium and anesthesia maintained with 2 mg fentanyl and 0.5% isoflurane. Additional intravenous access was achieved through placement of 9.0-Fr catheters in the right antecubital and left internal jugular veins, which were connected to a rapid infusion system. A transesophageal echo probe was placed to view the short axis and right ventricular volume. Right ventricular function as assessed by transesophageal echo appeared unchanged from pretransplantation evaluation. Initial hemodynamic measurements were recorded (table 2).

A 20-min trial of nitric oxide at 40 ppm was started before surgical incision. Chemiluminescence analysis was used to monitor the administered dose. Pulmonary artery pressures decreased in response to inhaled nitric oxide and increased after its discontinuation (table 2). Pulmonary artery wedge pressures were not obtained because of concern for possible vascular rupture. Surgical dissection was difficult because of adhesions. Five units of packed erythrocytes and 5 U of fresh frozen plasma were administered to maintain stability during stage 1, the duration of that stage being 4 h, 12 min. Venous bypass was not instituted. After clamping of the supra- and infracavatic vena cava, she required 2 U of packed erythrocytes, 3 U of fresh frozen plasma, and 400 µg Neo-Synephrine in divided doses to maintain hemodynamic stability. Pulmonary artery pressures ranged at about 55–60/25–30 mmHg.

The grafted liver was received from a 36-year-old donor. The liver had been perfused with 450 ml of University of Wisconsin solution. Cold ischemic time was approximately 7 h, warm ischemic time 53 min. The duration of stage 2 was 1 h, 40 min.

Forty minutes following caval cross-clamping, nitric oxide was restarted at 40 ppm. At the conclusion of stage 2, the portal venous and suprahepatic caval clamps were released slowly to limit the rate of return of blood to the pulmonary circulation. This was well tolerated, and subsequently the infracavatic vena cava was slowly unclamped. At this stage and during nitric oxide administration, pulmonary artery pressures increased precipitously whereas systemic pressures fell.

Table 2. Intraoperative Hemodynamics

<table>
<thead>
<tr>
<th>Intervention with nitric oxide (ppm)</th>
<th>80 min Postinduction</th>
<th>90 min Postinduction</th>
<th>30 min into Stage 2</th>
<th>50 min into Stage 2</th>
<th>Reperfusion</th>
<th>80 min Posthepatic</th>
<th>90 min Posthepatic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure (mean) (mmHg)</td>
<td>120/65 (60)</td>
<td>130/70 (90)</td>
<td>130/65 (96)</td>
<td>130/65 (96)</td>
<td>78/44 (55)</td>
<td>110/50 (70)</td>
<td>120/70 (56)</td>
</tr>
<tr>
<td>Heart rate (beats/min)</td>
<td>90</td>
<td>90</td>
<td>110</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Cardiac output (L/min)</td>
<td>7.6</td>
<td>8.8</td>
<td>7.5</td>
<td>8.5</td>
<td>3.2</td>
<td>7.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Central venous pressure (mmHg)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Pulmonary artery pressure (mean) (mmHg)</td>
<td>87/27</td>
<td>57/24</td>
<td>68/28 (41)</td>
<td>60/24 (36)</td>
<td>105/87 (93)</td>
<td>46/22</td>
<td>72/25 (46)</td>
</tr>
<tr>
<td>Mixed venous hemoglobin oxygen saturation (%)</td>
<td>88</td>
<td>91</td>
<td>88</td>
<td>91</td>
<td>74</td>
<td>89</td>
<td>93</td>
</tr>
</tbody>
</table>

Anesthesiology, V 81, No 6, Dec 1994
blood pressure decreased (table 2). The transesophageal echo revealed marked global right ventricular hypokinesis. What were thought to be air emboli were observed only fleeting. A total of 300 μg epinephrine was given with improvement in ventricular contractility, although the systemic blood pressure remained low. Systemic pressure gradually increased as phenylephrine was administered in divided doses to a total of 400 μg. Pulmonary artery pressures gradually decreased (table 2). Continued improvement in right ventricular function was observed by transesophageal echo.

One hour after reperfusion, with nitric oxide administration continuing, the patient was hemodynamically stable; pulmonary artery pressures were 46/22 mmHg. The liver appeared to be functioning well and producing bile. The nitric oxide was discontinued to determine pulmonary vascular resistance. The pulmonary artery pressures increased to 72/25 mmHg with a slight decrease in cardiac output (table 2). As cardiac output and mixed venous oxygen saturations remained within acceptable limits, nitric oxide therapy was not reinstalled. Stage 3 duration was 5 h, 29 min. Fluid replacement during the entire procedure included 4,500 ml of balanced crystalloid, 19 U of packed erythrocytes, 24 U of fresh frozen plasma, 40 U of platelets, 10 U of cryoprecipitate, and 2.75 l 5% albumin. Estimated blood loss was 8 l, and urine output was approximately 3 l.

The patient was transferred to the intensive care unit, where pulmonary artery pressures and cardiac output remained about 72/33 mmHg and 8.34 l/min, respectively. She remained hemodynamically stable and was separated from ventilatory support 26 h postoperatively. The patient was discharged from the intensive care unit by 72 h. The duration of hospitalization was 19 days. Subsequently, she has experienced no episodes of rejection. One year after transplantation, she is mildly dyspneic on exertion, has returned to work, and is rated as New York Heart Association class II. An echocardiogram performed 12 months after the transplant, estimated her pulmonary hypertension to be moderate. Cardiac and portal catheterizations demonstrated moderate pulmonary hypertension (table 1), inferior vena cava pressure of 8 mmHg, and hepatic vein pressure of 7 mmHg. She is receiving nifedipine for her pulmonary hypertension.

Discussion

The association between portal and pulmonary hypertension has been well documented.6–11 As symptoms may be nonspecific or attributed to the ESLD,12 evidence of pulmonary hypertension must be sought carefully. The chest radiograph and electrocardiogram often have findings suggestive of pulmonary hypertension.13,14 Echocardiography is useful for detecting pulmonary hypertension and evaluating ventricular function and is an excellent screening tool in the preoperative assessment of these patients.15,16 Mean survival after diagnosis of pulmonary hypertension associated with ESLD is 15 months with a 6-month mortality of 50%.17

When transplantation is considered, patient selection is particularly important.4 There is insufficient case history and no established guidelines for deciding which transplantation candidates need further invasive evaluation once pulmonary hypertension is detected. However, in the National Institutes of Health Registry on Primary Pulmonary Hypertension, an algorithm has been developed that may guide evaluation.18 Once an echocardiogram has established pulmonary hypertension, and valvular disease and shunts have been eliminated as a likely etiology, a ventilation-perfusion scan should be performed to evaluate for embolic disease. Patients with more than one segmental defect should receive pulmonary angiography. If pulmonary emboli is eliminated as an etiology, the patient should undergo cardiac catheterization.

If the patient has moderate or severe pulmonary hypertension, vasodilator potential must be assessed.5 Optimal, reductions in pulmonary artery pressures or increases in cardiac output are observed with preservation of systemic pressures. Failure to achieve reductions in pulmonary artery pressures with vasodilators suggests the vascular disease has become fixed and is a poor prognostic sign.5,4 In contrast, patients with ESLD and mild to moderate pulmonary hypertension (pulmonary vascular resistance within 120–275 dyne·s·cm⁻²) have survived orthotopic liver transplantation without difficulty.19

Short-acting intravenous vasodilators, such as prosta-cyclin, prostaglandin E1, adenosine, sodium nitroprusside, and nitroglycerin, have been administered to treat pulmonary hypertension but may produce unacceptable systemic hypotension.20,21 Nitric oxide, or endothelium-derived relaxing factor,22–24 offers a novel therapy for pulmonary hypertension associated with many conditions.25–34 Nitric oxide, when inhaled, crosses the alveolar membrane and produces smooth muscle dilation. However, when it crosses into the circulation, nitric oxide is bound to hemoglobin with an avidity 1,500 times greater than that of carbon monoxide, preventing its action in the systemic circulation.35,36

The ideal dose of nitric oxide has yet to be determined. Current trends suggest doses as small as 2 ppm may be effective in producing pulmonary vasodilation and improving oxygenation.37–39 What constitutes a satisfactory dose may vary depending on the chronicity of the condition, the particular disease process, and the desired objectives (oxygenation vs. vasodilation). Optimally, within any individual, dose-response evaluation should be undertaken to determine the minimum effective dose. During transplantation, numerous factors may exacerbate pulmonary hypertension. Pulmonary artery...
pressures may increase precipitously secondary to acido-
sis and fluid shifts.10,64 Reperfusion of the donor liver
is a time of increased risk because vasoactive substances
returning to the heart may result in systemic vasodil-
ation and myocardial depression.12,43 Right ventricu-
lar decompensation may be poorly tolerated when there
is preexisting ventricular dysfunction and is a major
cause of death in pulmonary hypertension.44 Preser-
vation of right ventricular function may be the deter-
minal factor in survival of these patients.1 Reduction
in pulmonary pressures with nitric oxide may prevent
right ventricular deterioration.

In summary, patients with end-stage liver disease have
an incidence of pulmonary hypertension higher than
the normal population and may pose difficult manage-
ment problems during liver transplantation. Right heart
catheterization and vasodilator testing will establish the
to degree of pulmonary hypertension and responsiveness
to therapy and may influence decisions concerning
transplant candidacy and intraoperative intervention.
The significant hemodynamic changes occurring during
orthotropic liver transplantation may be poorly tolerated
by such individuals. We have demonstrated that inhaled
nitric oxide, through its selective pulmonary vasodila-
tion, is an effective agent for treating pulmonary hyper-
tension in patients undergoing liver transplantation.

References

1. Prager MC, Cauldwell CA, Ascher NL, Roberts JP, Wolfe CL: Pulmonary hypertension associated with liver disease is not reversible after liver transplantation. \textit{Anesthesiology} 77:375–378, 1992
5. Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wall-
work J: Inhaled nitric oxide as a cause of selective pulmonary vasodila-
wards JE: Coexisting pulmonary and portal hypertension: Morpho-
logic and clinical features. \textit{J Am Coll Cardiol} 10:1233–1238, 1987
7. Levine OR, Harris RC, Blanc WA, Mellins RB: Progressive pul-
monary hypertension in children with portal hypertension. \textit{J Pediatr}
83:964–972, 1973
M: Association of pulmonary hypertension with congenital portal
hypertension complicating portal hypertension. \textit{Am Rev Respir Dis}
120:849–856, 1979
10. McDonnell PJ, Toye PA, Hutchins GM: Primary pulmonary
hypertension and cirrhosis: Are they related? \textit{Am Rev Respir Dis} 127:
437–441, 1983
11. Hadengue A, Benhayoun MK, Lebrec D, Benhamou J-P: Pul-
monary hypertension complicating portal hypertension: Prevalence
and relation to splanchic hemodynamics. \textit{Gastroenterology} 100:
520–528, 1991
12. Lockhart A: Pulmonary arterial hypertension in portal hyper-
13. Reeves JT, Groves BM, Turkovich D: The case for treatment of
selected patients with primary pulmonary hypertension. \textit{Am Rev
Respir Dis} 134:342–346, 1986
with pulmonary hypertension. \textit{Anesthesiol Rev} 17:31–42, 1990
15. Goodman DJ, Harrison DC, Popp RL: Echocardiographic fea-
tures of primary pulmonary hypertension. \textit{Am J Cardiol} 35:438–443,
1974
16. Martin-Duran R, Larman M, Trugeda A, Vazquez de Prada JA,
Ruano J, Torres A, Figueroa A, Pajaron A, Nisal F: Comparison of
Doppler-determined elevated pulmonary arterial pressure with pres-
sure measured at cardiac catheterization. \textit{Am J Cardiol} 57:859–863,
1986
17. Robalino BD, Moodie DS: Association between primary pul-
monary hypertension and portal hypertension: Analysis of its patho-
physiology and clinical, laboratory and hemodynamic manifestations.
\textit{J Am Coll Cardiol} 17:492–498, 1991
18. Rubin LJ: Primary pulmonary hypertension: ACCP consensus
19. Plevak D, Krowka M, Rezine S, Dunn W, Southorn P: Successful
liver transplantation in patients with mild to moderate pulmonary
20. Weir EK, Ribin LJ, Ayres SM, Bergofsky EH, Bruntzel DH, Bette
KM, Elliott CG, Fishman AP, Goldring RM, Groves BM, Kernis JT,
Koener SK, Levy PS, Pietra GG, Reid LM, Rich S, Vreim CE, Williams
GW, Wu M: The acute administration of vasodilators in primary pul-
pulmonary hypertension with intravenous epoprostenol (prostacy-
22. Furchgott RF, Zawadzki JV: The obligatory role of endothelial
cells in the relaxation of arterial smooth muscle by acetylcholine.
\textit{Nature} 288:373–376, 1980
23. Palmer RMJ, Ferrige AG, Moncada S: Nitric oxide release ac-
counts for the biological activity of endothelium-derived relaxing
24. Cremona G, Dinh-Xuan AT, Higenbottam TW: Endothellum-
derived relaxing factor and the pulmonary circulation. \textit{Lung} 169:
185–202, 1991
nitric oxide: A selective pulmonary vasodilator reversing hypoxic
G, Goutail-Flaud F, Couturier C, Egu J-F, Mekoura R, Saint-Maurice C:
Successful repair of a severe left congenital diaphragmatic hernia
during continuous inhalation of nitric oxide. \textit{Anesthesiology} 80:
1171–1175, 1994
27. Frostell CG, Lönnqvist PA, Sonesson SE, Gustafsson LE, Lühr
G, Noack G: Near fatal pulmonary hypertension after surgical repair

Anesthesiology 81:1542–1545, 1994
© 1994 American Society of Anesthesiologists, Inc.
J. B. Lippincott Company, Philadelphia

Paraplegia in a Patient with an Intrathecal Catheter and a Spinal Cord Stimulator

J. Antonio Aldrete, M.D., M.S.,* Luis A. Vascello, M.D.,† Ramsis Ghaly, M.D.,‡ Dianne Tomlin, E.M.T.§

NEW technical devices are adopted frequently and enthusiastically, while possible serious risks are overlooked. This has happened with intrathecal catheters connected to infusion pumps¹ and spinal cord stimulators.²

Herein, we describe a sudden spinal cord derangement that occurred in a patient in whom both an intrathecal catheter infusing morphine by an implanted computerized pump and a spinal cord stimulator had been inserted.

Case Report

A 73-yr-old man described an acute onset of motor and sensory loss in January 1991 but still suffered from thoracic back pain,