CORRESPONDENCE

Anesthesiology
1996; 84: 474
© 1996 American Society of Anesthesiologists, Inc.
Lippincott-Raven Publishers

Potential Physiologic Mechanism for Ketamine-induced Emergence Delirium

To the Editor.—I read with interest the recent article concerning the attenuation of cardiostimulatory and psychotomimetic effects of ketamine by dexmedetomidine. This represents a definite advance in alleviating the side effects of ketamine anesthesia. However, in the conclusions, the authors state that their finding that dexmedetomidine prevented central nervous system (CNS) side effects was “difficult to explain.” Several studies by Olney et al. have begun to investigate the underlying mechanism of NMDA antagonist (of which ketamine is an example) induced neurotoxicity. It has been shown that ketamine causes damage to neurons in the posterior cingulate and retrosplenial cortex of rats, areas postulated to mediate affective and emotional responses. It has also been shown that anticholinergics, GABAergic agonists, and NMDA agonists may function to inhibit this neuronal damage. It could be that this mechanism accounts for the remarkable absence of CNS side effects in groups treated with NMDA receptor antagonists. Paradoxically, this would suggest that the routine administration of centrally acting anticholinergics, such as scopolamine and atropine, which may be psychotomimetic in their own right, may be warranted when ketamine is used. This study also predicts that GABA agonists, such as benzodiazepines and barbiturates, should be protective against emergence delirium. The current study had no untreated control group, so this direct comparison could not be made. However, barbiturates may be more effective in blocking CNS side effects than benzodiazepines because they act as more complete agonists at the GABAA receptor channel and can block NMDA receptors.

In sum, it seems that there is a plausible scientific basis for the authors’ findings. This literature suggests other premedication regimens that may be helpful in preventing the CNS side effects of ketamine. It is hoped that the authors will continue to pursue this interesting line of investigation.

Howard B. Gutstein, M.D.
Director, Pediatric Pain Service
Research Investigator
Mental Health Research Institute
University of Michigan Medical Center
Room E3900, Box 0211
Ann Arbor, Michigan 48109-0211

References
5. Olney JW, Farber NB: NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins and research tools for studying schizophrenia. Neuropsychopharmacology (in press)

(Accepted for publication October 27, 1995)

Effect of 7.2% Hypertonic Saline/6% Hetastarch on Left Ventricular Contractility in Anesthetized Humans

To the Editor.—Goertz et al.1 described the effects of hypertonic saline/6% hetastarch on left ventricular contractility. A number of years ago, we performed a study examining the hemodynamic response to 25% mannitol (a hypertonic solution) in patients before and during cardiac bypass. We found a 23 ± 6% (SE) decrease in systemic arterial pressure with a 38 ± 7% (SE) reduction in systemic vascular resistance in prebypass patients. During cardiopulmonary bypass, patients experienced a 30 ± 5% to a 40 ± 3% (SE) decrease in mean systemic pressure depending on dose and rate of mannitol administration. We also found that the patients not on bypass were able to compensate for the decreasing cardiac output by vasoconstriction, whereas those on bypass were not.

Anesthesiology, V 84, No 2, Feb 1996
CORRESPONDENCE

able to compensate for the decrease in peripheral resistance by increasing cardiac output by approximately 0.81/min. These changes, however, were short-lived, and all hemodynamic parameters returned to baseline within a matter of several minutes.

We also performed radiolabeled microsphere studies and dose-responses studies in rabbits, examining hypertonic glucose and hypertonic mannitol. We found that rate and dose were important factors influencing change in systemic vascular resistance and in systemic arterial pressure. I.e., the faster the rate of administration and the greater the tonicity load, the greater the hemodynamic effect. The vascular bed primarily responsive to this hypertonic load was in muscle tissue. One wonders how long the hypotension lasted in the patients studied by Goertz et al., whether this was an effect that was sustained for more than a transient period (as we observed with 25% mannitol), and whether the phenomena might have been caused by vasodilation of the vascular supply to muscle tissue, resulting in a reflex rather than a direct cardiac effect.

Charles J. Côté, M.D.
Professor of Anesthesia and Pediatrics

Northwestern University Medical School
Vice Chairman
Director of Research
Department of Pediatric Anesthesia
Children’s Memorial Hospital
2300 Childrens Plaza
Chicago, Illinois 60614

References


(Accepted for publication October 27, 1995)

Defective Carbon Dioxide Absorber as a Cause for a Leak in a Breathing Circuit

To the Editor—We would like to bring to attention an unusual cause of a leak in the breathing circuit of an anesthesia system involving the carbon dioxide absorber canister (Soda Sorb NNN 6505-00-782-6484, WR Grace, Lexington, MA).

During a routine preuse machine check, we noted a leak within the breathing system. Visual inspection of the breathing circuit did not reveal the source of the leak, and all joints appeared to be intact.

A draft could be felt near the carbon dioxide canisters. Initially, we thought that they were misaligned and removed them and changed them from top to bottom. However, the leak persisted. Thinking that the absorbers were still out of alignment, we removed them from the housing. This caused some free granules to fall to the floor. On closer inspection of the canister, it was noted to be defective. The canister is made of a clear plastic cylinder, filled with absorbent

Anesthesiology, V 84, No 2, Feb 1996