Are Plasma Concentration Values Necessary for Pharmacodynamic Modeling of Muscle Relaxants?

Dennis M. Fisher, M.D.,* Peter M. C. Wright, M.D.†

Background: The traditional approach to pharmacokinetic/pharmacodynamic modeling of muscle relaxants requires sampling of plasma to determine drug concentrations. The authors recently proposed that certain pharmacodynamic characteristics (IR\textsubscript{50}, the steady-state infusion rate to maintain 50% twitch depression; \(k_{\text{es}}\), the rate constant for equilibration between plasma concentration and effect; and \(\gamma\), the Hill factor describing sigmoidity of the concentration–effect relation) could be estimated without plasma concentration data. Here estimates for IR\textsubscript{50}, \(k_{\text{es}}\), and \(\gamma\) determined with and without plasma concentration data are compared.

Methods: Six volunteers were given 15–60 \(\mu\)g/kg vecuronium on each of two occasions during anesthesia with propofol. Mechanical responses to train-of-four stimulation were measured at the adductor pollicis and at the laryngeal adductors. Various pharmacokinetic models accounting for the presence and potency of vecuronium's 3-desacyethyl metabolite and a sigmoid e-max pharmacodynamic model were fit to the resulting plasma concentration and effect (adductor pollicis and laryngeal adductors) data to determine IR\textsubscript{50}, \(k_{\text{es}}\), and \(\gamma\) for each effect. One model related dose to effect without plasma concentration data.

Results: Values for IR\textsubscript{50}(adductor pollicis), IR\textsubscript{50}(laryngeal adductors), \(\gamma\)(adductor pollicis), and \(\gamma\)(laryngeal adductors) were similar when determined with and without plasma concentration values. Values for \(k_{\text{es}}\)(adductor pollicis) and \(k_{\text{es}}\)(laryngeal adductors) were larger when determined without plasma concentration values compared with those determined with these values; however, the ratio of \(k_{\text{es}}\)(adductor pollicis) to \(k_{\text{es}}\)(laryngeal adductors) was similar when determined with and without plasma concentration values.

Conclusions: Certain pharmacodynamic parameters were estimated accurately in the absence of plasma concentration values. This suggests limited utility for plasma concentration data under conditions similar to those of the present study. (Key words: Modeling; pharmacodynamics; NONMEM. Neuromuscular relaxants; vecuronium. Pharmacodynamics: adductor pollicis; larynx; models.)

A TRADITIONAL approach to pharmacodynamic modeling is to administer a drug, measure its effects, and sample plasma to determine the time course of drug concentration. Pharmacokinetic (distribution, elimination) and pharmacodynamic (equilibration, sensitivity) characteristics of the drug are then determined and, in combination, used to formulate dosing regimens to achieve a desired effect. Although plasma concentration data are essential to this approach, an alternative approach to determine dosing regimens without measuring of plasma concentration was proposed by Verotta and Sheiner. We previously used their approach to estimate the steady-state infusion rate to maintain 50% twitch depression (IR\textsubscript{50}) with vecuronium. Two issues arose from that analysis. First, in the absence of plasma concentration data, we could not verify whether this new approach yielded the same values as the traditional approach. Second, using the new approach we observed that IR\textsubscript{50} varied as a function of the bolus dose of vecuronium. The absence of plasma concentration data prevented us from determining whether this dose-related change resulted from a nonlinearity in pharmacokinetics or a dose-related change in pharmacodynamics or was an artifact of the new method of analysis. The present study was designed to examine these issues. By obtaining plasma concentration data after administering vecuronium, we could analyze twitch tension data with and without these plasma concentration values. By studying volunteers on two occasions with different doses of vecuronium, we could determine whether the pharmacokinetics and/or pharmacodynamics of vecuronium varied with dose.

Methods

Data were obtained from six healthy volunteers given vecuronium on two occasions each during propofol
anesthesia. Details of the anesthetic management, neuromuscular monitoring, data recording, blood sampling, and vecuronium determinations have been reported previously. Brieﬂy, twitch tension of the adductor pollicis in response to supramaximal train-of-four stimulation every 12 s was measured. Twitch tension of the laryngeal adductors was measured using a modiﬁcation of the technique of Donati et al. After 30 min of stimulation at both the adductor pollicis and the recurrent laryngeal nerve, vecuronium was administered intravenously and neuromuscular function was recorded until subjects were fully recovered. On the ﬁrst occasion, vecuronium dose was 30 μg/kg. Complete paralysis at the adductor pollicis and approximately 50% block at the laryngeal adductors developed in one subject; on his second occasion, he received 15 μg/kg vecuronium. The remaining subjects received 60 μg/kg vecuronium on their second occasion. On each occasion, plasma samples were obtained before and 0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 45, and 60 min after vecuronium administration. Plasma concentrations of vecuronium and its metabolite, 3-desacetylvecuronium, were determined by gas-liquid chromatography. The pharmacokinetic/pharmacodynamic analysis was performed both with and without plasma concentration data.

Modeling with Plasma Concentration Data

Two pharmacokinetic models were tested, one compartmental (parametric) and the other noncompartmental (semiparametric). Some results from these analyses were reported previously. 3

Compartmental Approach, Pharmacokinetic Model. The ﬁrst model was the traditional compartment model that relates plasma concentration (Cp) at time t after bolus drug administration to dose as

\[Cp = \text{dose} \cdot \sum_{i=1}^{n} A_i e^{-\lambda_i t} \]

where \(A_i \) is the (dose-normalized) intercept and \(\lambda_i \) is the rate constant associated with each of \(n \) exponential constants. Initial evaluations suggested that a three-compartment model \((n = 3 \text{ in equation 1}) \) was preferred \((P < 0.05 \text{ by the likelihood ratio test}) \) to a two-compartment model to ﬁt the vecuronium concentration (Cp) versus time data; therefore, all subsequent analyses used three-compartment models. Because of limited information regarding disposition of 3-desacetylvecuronium, it was assumed to distribute to a single compartment, the volume of which equaled vecuronium’s central compartment volume \((V_i)\). The pharmacokinetic model allowed for unidirectional metabolic conversion of vecuronium to 3-desacetylvecuronium in the central compartment. Residual error between measured and predicted values was modeled as being proportional to predicted values.

Compartmental Approach, Pharmacodynamic Model. Concentration in the effect compartment can be described as

\[Ce = k_{co} \cdot \text{dose} \cdot \sum_{i=1}^{n} \frac{A_i \cdot (e^{-\lambda_i}\cdot e^{-k_{co}t})}{k_{co} - \lambda_i} \]

where \(k_{co} \) is the rate constant for equilibration between plasma and the effect compartment. Based on previous pharmacokinetic and pharmacodynamic studies, we assumed that \(k_{co} \) was identical for vecuronium and 3-desacetylvecuronium and that 3-desacetylvecuronium was 80% as potent as vecuronium. The relation between each effect (adductor pollicis, laryngeal adductors) and concentrations of vecuronium and its metabolite was described by the following equation:

\[\text{Effect} = \frac{C_{\text{active}} \cdot g}{C_{\text{active}} \cdot g + C_0 \cdot g} \]

where \(C_{\text{active}} \) is the active concentration of the muscle relaxant in the effect compartment (the sum of vecuronium concentration and 0.8κ concentration of the metabolite), \(g \) is the Hill factor that describes sigmoidicity (steepness) of the concentration-effect relation, and \(C_0 \) is the steady-state plasma concentration of the muscle relaxant producing 50% effect. In addition, the effect compartment has a trivial volume (arbitrarily ﬁxed to one-thousandth of the volume of the central compartment) so as to not inﬂuence estimates of pharmacokinetic parameters. Residual error between measured and predicted values for twitch tension was modeled as constant.

Area under the plasma concentration curve versus time curve was determined as

\[\text{AUC} = \text{dose} \cdot \sum_{i=1}^{n} \frac{A_i}{\lambda_i} \]

and plasma clearance (Cl) was determined as vecuronium dose divided by area under the curve. The steady-state infusion rate that produces 50% twitch depression \((IR_{50}) \) was calculated as the product of Cl and \(C_{co} \).

Noncompartmental Approach, Pharmacokinetic/Pharmacodynamic Model. Two problems
PHARMACODYNAMIC MODELING

are associated with application of the compartmental model to the plasma concentration data from this study. First, the model does not account for the peak in 3-desacetylvecuronium concentrations shortly after vecuronium administration, a result of each ampule of vecuronium containing this metabolite (<1%; personal communication, Mitchell Weinnerger, Ph.D., Organon, Inc., West Orange, NJ, 1994). Second, the traditional model assumes that plasma vecuronium concentrations decline monotonically after bolus drug administration, whereas Ducharme et al. showed that arterial vecuronium concentrations increase during the 30 s after drug administration and then oscillate before decreasing monotonically. Even though the traditional model fits the observed plasma concentration data well, it presumably misspecifies the plasma concentration versus time course during the initial 30 s.

These two problems with the compartmental model could be addressed by using a complicated compartmental model that permits absorption of vecuronium into the central compartment from a depot and also permits administration of a small dose (the magnitude of which is determined in the analysis) of 3-desacetylvecuronium into the central compartment or the same depot. These analyses were performed but are not reported because their results differ minimally from the results from the other analyses. An alternate approach is to describe the plasma concentration versus time profile using linear interpolation; that is, to estimate plasma concentration at each time point from the preceding and subsequent measured values. For example, a measured vecuronium concentration of 150 ng/ml at 10 min and 100 ng/ml at 15 min would yield a concentration of 130 ng/ml at 12 min. Vecuronium (and its metabolite) concentration is assumed to increase in a linear manner from a concentration of 0 ng/ml at 0 min to the concentration observed at 30 s. This approach approximates the plasma concentration versus time profile observed by Ducharme et al. and presumably describes the early time course better than the compartmental model does. The plasma concentration versus time profile described by linear interpolation of the measured vecuronium and 3-desacetylvecuronium concentrations was then used in a pharmacodynamic analysis identical to that used in the compartmental approach just described. Area under the curve from time 0 to the time of the final measured vecuronium concentration was determined using the trapezoidal rule, assuming that plasma concentration increased in a linear manner from a value of 0 ng/ml at 0 min to the observed value at 0.5 min; area under the curve after the final observed vecuronium concentration value (Cfinal) was estimated as Cfinal divided by β, where β is the slope determined from linear regression of the logarithms of final 3–6 vecuronium concentration values versus time. Plasma clearance was calculated as vecuronium dose divided by area under the curve; IR50 was determined as the product of C50 and Cl.

Modeling without Plasma Concentration Data

This approach has been described in detail and is described here briefly. If effect is related to effect site concentration as described in equation 2 and effect is related to effect site concentration as in equation 3, these equations can be combined to yield

\[
\text{Effect} = \left[\frac{k_{e0} \cdot \text{dose} \cdot \sum_{i=1}^{n} A_i \cdot (e^{-\lambda_i t} - e^{-k_{e0} t})}{k_{e0} - k_{e0}} \right] + C_{50}^{-γ} \]

Equation 5 can be solved iteratively, yielding estimates for \(k_{e0} \), and for each of the values of \(λ_i \). However, in the absence of values for plasma concentration, \(C_{50} \) cannot be estimated (note that changing each \(A \), twofold changes \(C50 \) twofold).

When the pharmacokinetic model has only one compartment (\(n = 1 \)), equation 5 reduces to

\[
\text{Effect} = \left[\frac{k_{e0} \cdot \text{dose} \cdot A \cdot (e^{-k_{\text{elimination}} t} - e^{-k_{e0} t})}{k_{e0} - k_{\text{elimination}}} \right] + C_{50}^{-γ} \]

where \(A_i \) and \(λ_i \) are renamed \(A \) and \(k_{\text{elimination}} \), respectively (approximate equations are available for \(n > 1 \)). The numerator and the denominator on the right side of equation 6 are then multiplied by \((k_{\text{elimination}}/A)^γ \), where \(k_{\text{elimination}}/A \) equals Cl. In addition, the product of Cl and IR50 is replaced by IR50. This changes equation 6 to
Effect =
\[
\left[\frac{k_{eo} \cdot \text{dose} \cdot k_{elimination} \cdot (c^{-k_{elimination}t} - c^{-k_{eo}t})}{k_{eo} - k_{elimination}} \right]^\gamma + IR_{50}^\gamma
\]

In the absence of plasma concentration data, the parameters $k_{elimination}$ and k_{eo} do not have their traditional meanings of relating drug dose to elimination ($k_{elimination}$) and equilibration between plasma concentration and effect (k_{eo}). Instead, $k_{elimination}$ relates close to the concentration in a hypothetical driving compartment; k_{eo} relates concentration in that driving compartment to effect. In addition, if only a single effect was measured, then absence of plasma concentration data does not permit us to distinguish which of the two rate constants relates to elimination and which to equilibration. However, this problem does not exist when two effects are modeled simultaneously, as in the present study.

Equation 7 can be solved using iterative techniques to yield the "best fit." Three models with one, two, and three "pharmacokinetic" compartments (corresponding to $n = 1, 2,$ and 3 in equation 5) were tested. Residual error between measured and predicted values for twitch tension was modeled as constant. A model with more compartments was accepted only if its objective function ($-2 \cdot \log$ likelihood, equivalent to the residual sum of squares in traditional nonlinear regression) was statistically improved (a decrease of 3.8 units for each additional parameter in the new model) and if the model with more compartments was associated with a visual improvement in the residual differences between observed and measured values.

Comparison of the Three Approaches
Values for $IR_{50}(\text{adductor pollicis})$, $IR_{50}(\text{laryngeal adductors})$, the ratio of $IR_{50}(\text{laryngeal adductors})$ to $IR_{50}(\text{adductor pollicis})$, $k_{eo}(\text{adductor pollicis})$, $k_{eo}(\text{laryngeal adductors})$, the ratio of $k_{eo}(\text{laryngeal adductors})$ to $k_{eo}(\text{adductor pollicis})$, $\gamma(\text{adductor pollicis})$, $\gamma(\text{laryngeal adductors})$, and the ratio of $\gamma(\text{laryngeal adductors})$ to $\gamma(\text{adductor pollicis})$ for each of the three approaches were compared using repeated measures analysis of variance and the Student-Newman-Keuls test.

Comparison of the Two Muscle Groups
Values for the ratio of $IR_{50}(\text{laryngeal adductors})$ to $IR_{50}(\text{adductor pollicis})$, the ratio of $k_{eo}(\text{laryngeal adductors})$ to $k_{eo}(\text{adductor pollicis})$, and the ratio of $\gamma(\text{laryngeal adductors})$ to $\gamma(\text{adductor pollicis})$ were compared to 1.0 using a one-sample t test.

Dose-related Changes in Pharmacodynamics
The ratio of values for $IR_{50}(\text{adductor pollicis})$, $k_{eo}(\text{adductor pollicis})$, and $\gamma(\text{adductor pollicis})$ from the large dose of vecuronium to values from the small dose were determined. Mean values of these ratios were compared to 1.0 using a one-sample t test.

Except for the analyses of dose-related changes in pharmacodynamics (for which data on laryngeal muscle effect were not analyzed), data for both adductor pollicis and laryngeal muscle effect were fit simultaneously. All pharmacokinetic and pharmacodynamic analyses were performed simultaneously by individual participant and dose using NONMEM. All statistical tests were two tailed; $P < 0.05$ was assumed to be significant. Some statistical tests were performed after log transformation of the data. Values are reported as means ± SD.

Results

Modeling with Plasma Concentration Data
The compartmental model fit the vecuronium plasma concentration data well and resulted in an excellent fit of the pharmacodynamic model to the effect data for both muscle groups for all participants. However, for six of the ten occasions when 3-desacetylvecuronium was identified, the model failed to account for the early peak in 3-desacetylvecuronium concentrations. Using the noncompartmental approach, linear interpolation of the plasma concentration data for vecuronium and 3-desacetylvecuronium necessarily resulted in an exact fit of the pharmacokinetic model to the plasma concentration data.

Modeling without Plasma Concentration Data
The pharmacodynamic model fit the effect data well for both muscle groups for all participants (Fig. 1). For ten of 12 occasions (five of six participants), the model

\[\text{Anesthesiology. V 86, No 3, Mar 1997}\]
Dose-related Changes in Pharmacodynamics

Values for $C_{0\infty}$ (adductor pollicis) for the large dose were larger than those for the small dose in each of the models with plasma concentration data (table 2). Values for $IR_{0\infty}$ (adductor pollicis) were larger for the large dose compared with those for the small dose in the noncompartmental model and in the model without plasma concentration data.

Discussion

We show that estimates for certain pharmacodynamic parameters—$IR_{0\infty}$ (adductor pollicis), IR_{∞} (laryngeal adductors), γ (adductor pollicis), and γ (laryngeal adductors)—and the ratio of $k_{0\infty}$ (laryngeal adductors) to k_{∞} (adductor pollicis) are similar regardless of whether values for plasma concentrations of vecuronium are used in the analysis. However, the model without plasma concentration values yielded estimates for $k_{0\infty}$ (adductor pollicis) and k_{∞} (laryngeal adductors) larger than those from the model with plasma concentration data. In that $k_{0\infty}$ describes equilibration between concentrations in plasma and at the effect site, we assume that the value obtained with plasma concentration values is correct and that the value obtained without plasma concentrations is therefore an overestimate. The flawed estimates for $k_{0\infty}$ obtained without plasma concentration data may be due to the relative paucity of information regarding the shape of the concentration-effect relation during onset, a result of the brief period between initial and maximum effect (fig 1).

There are several limitations to the utility of pharmacodynamic modeling without plasma concentration data. First, our approach to modeling without plasma concentration data requires a priori definition of a pharmacodynamic model (such as equation 3) and would not be applicable if other pharmacodynamic approaches (e.g., Verotta and Sheiner’s “collapse the loop” approach) were necessary. Second, just as the traditional pharmacokinetic model misspecifies the plasma concentration versus time course during the initial 30–60 s after bolus drug administration, our model without plasma concentration data (see equation 1) assumes that the plasma concentration of vecuronium peaks instantly at time 0 and then decreases continuously after drug administration. Despite this incor-
D. M. FISHER AND P. M. C. WRIGHT

Table 1. Values for the Pharmacokinetic and Pharmacodynamic Parameters (Mean ± SD) Determined Using Three Different Models, Two of Which Used Plasma Concentration Data in the Analysis

<table>
<thead>
<tr>
<th></th>
<th>Models with Plasma Concentration Data</th>
<th>Model without Plasma Concentration Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compartimental</td>
<td>Noncompartimental</td>
</tr>
<tr>
<td>Ci (ml·kg⁻¹·min⁻¹)</td>
<td>5.1 ± 2.4</td>
<td>6.1 ± 1.6†</td>
</tr>
<tr>
<td>kₑ₀ (adductor pollicis) (min⁻¹)</td>
<td>0.12 ± 0.05</td>
<td>0.15 ± 0.06</td>
</tr>
<tr>
<td>kₑ₀ (laryngeal adductors) (min⁻¹)</td>
<td>0.18 ± 0.07</td>
<td>0.25 ± 0.12</td>
</tr>
<tr>
<td>kₑ₀ (laryngeal adductors/ kₑ₀ (adductor pollicis))</td>
<td>1.52 ± 0.38†</td>
<td>1.62 ± 0.46‡</td>
</tr>
<tr>
<td>C₀₀ (adductor pollicis) (ng/ml)</td>
<td>166 ± 64</td>
<td>165 ± 66</td>
</tr>
<tr>
<td>C₀₀ (laryngeal adductors) (ng/ml)</td>
<td>227 ± 76</td>
<td>228 ± 76</td>
</tr>
<tr>
<td>C₀₀ (laryngeal adductors)/C₀₀ (adductor pollicis)</td>
<td>1.50 ± 0.58‡</td>
<td>1.53 ± 0.63‡</td>
</tr>
<tr>
<td>γ (adductor pollicis)</td>
<td>9.1 ± 4.5</td>
<td>7.6 ± 3.8†</td>
</tr>
<tr>
<td>γ (laryngeal adductors)</td>
<td>5.7 ± 5.5</td>
<td>4.1 ± 2.1†</td>
</tr>
<tr>
<td>γ (laryngeal adductors)/γ (adductor pollicis)</td>
<td>0.64 ± 0.54†</td>
<td>0.55 ± 0.14‡</td>
</tr>
<tr>
<td>IR₀ (adductor pollicis) (μg·kg⁻¹·min⁻¹)</td>
<td>0.73 ± 0.25</td>
<td>0.94 ± 0.12</td>
</tr>
<tr>
<td>IR₀ (laryngeal adductors) (μg·kg⁻¹·min⁻¹)</td>
<td>1.04 ± 0.35</td>
<td>1.31 ± 0.32</td>
</tr>
<tr>
<td>IR₀ (laryngeal adductors)/IR₀ (adductor pollicis)</td>
<td>1.50 ± 0.58‡</td>
<td>1.53 ± 0.63‡</td>
</tr>
</tbody>
</table>

N = 12 (two doses for each of six subjects) for all values.
† Differs from compartmental model.
‡ Differs from model with plasma concentration data.

rect assumption, all three approaches (two of which misspecified plasma concentrations during the period immediately after drug administration) yielded similar values for most pharmacodynamic parameters. This suggests that the model misspecification does not produce large errors in modeling certain pharmacodynamic parameters.

A third limitation to our analyses is that several of the approaches (the compartmental model and the model without plasma concentration data) ignore the small dose of vecuronium’s metabolite in the drug administered. Because this metabolite accounted for less than 1% of the administered dose and the metabolite is only eight tenths as potent as vecuronium, it probably contributes minimally to the effect of these single doses of vecuronium. As a result, misspecifying the metabolite’s plasma concentration versus time course does not limit accuracy of the pharmacodynamic estimates. A fourth limitation is the brief time period (typically 30–40 min) when we measured effect. With repeated administration, recovery from vecuronium is cumulative, presumably because of increasing concentrations of its metabolite⁹ (the clearance of which is 69% that of vecuronium⁹). Thus our study design—administration of vecuronium doses smaller than typically used clinically—may underestimate the contribution of the metabolite to vecuronium’s effect with prolonged administration⁹,11 Had we administered larger doses or addi-

Table 2. Ratio of the Pharmacodynamic Parameters (Mean ± SD) from Two Different Doses of Vecuronium

<table>
<thead>
<tr>
<th></th>
<th>Models with Plasma Concentration Data</th>
<th>Model without Plasma Concentration Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compartimental</td>
<td>Noncompartimental</td>
</tr>
<tr>
<td>kₑ₀ (adductor pollicis)—large dose/small dose</td>
<td>1.52 ± 0.91</td>
<td>1.14 ± 0.73</td>
</tr>
<tr>
<td>C₀₀ (adductor pollicis)—large dose/small dose</td>
<td>1.28 ± 0.15*</td>
<td>1.33 ± 0.21*</td>
</tr>
<tr>
<td>γ (adductor pollicis)—large dose/small dose</td>
<td>0.73 ± 0.22*</td>
<td>0.89 ± 0.34</td>
</tr>
<tr>
<td>IR₀ (adductor pollicis)—large dose/small dose</td>
<td>1.38 ± 0.76*</td>
<td>1.31 ± 0.41*</td>
</tr>
</tbody>
</table>

Parameters were determined using three different models, two of which used plasma concentration data in the analysis. For each parameter, n = 6 for each of the large dose and small dose.
* Differs from 1.0.

Anesthesiology, V 86, No 3, Mar 1997

Downloaded From: http://anesthesiology.pubs.asahq.org/pdfeaccess.ashx?url=/data/journals/jasa/931277/ on 01/11/2019
PHARMACODYNAMIC MODELING

tional doses during recovery (and therefore been able
to monitor twitch tension for longer periods), the rate
of recovery presumably would have been slower and
the estimates for IR_{90} smaller with all of our analytical
approaches.

Another concern about these analyses regards
whether we have estimated IR_{90} accurately using any
of our approaches. Three possible techniques can esti-
mate IR_{90} or IR_{90} (the steady-state infusion rate de-
pressing twitch tension 90%) —direct determination
during steady-state conditions; modeling as the product
of Cl and C_{90} or C_{90} (the steady-state vecuronium con-
centration producing 90% effect), respectively; or mod-
eling using effect data only; the latter two techniques
were evaluated in the present study. Cannon et al. determined IR_{90} using the steady-state approach: They
infused vecuronium, adjusting the infusion rate until
twitch tension was 90% depressed. Although this ap-
proach yielded values for IR_{90} without modeling, it pro-
vided no information about γ and therefore no informa-
tion about dose requirements to maintain different magni-
tudes of effect (e.g., IR_{90}). In addition, their approach
was tedious and would have been further complicated
if two effects (e.g., both adductor pollicis and laryngeal
adductor twitch tension) were measured. Finally, their
approach provided no information about k_{eq}, and thus
offered no insight into to peak effect after bolus
doses. We recently modified Cannon et al.’s steady-state
approach by infusing mivacurium to maintain two to
three different levels of twitch depression, one to two
bracketing 50% twitch depression, and a third near 90%
twitch depression. A modification of the Hill equation
(equation 3) was then applied to these infusion rates
versus steady-state twitch depression to estimate γ
permitting estimates of IR_{90} and IR_{90} (but not k_{eq}). Although
IR_{90} and IR_{90} were estimated, rather than determined
directly, we were confident of these estimates because
steady-state twitch depression bracketed 50% twitch
depression and was close to 90% twitch depression.

In contrast to these steady-state approaches, the pre-
sent study compares two methods to model IR_{90} (each
of which also permits estimation of IR_{90}), one using

$$IR_{90} = IR_{90} \cdot \frac{[90\%]}{[100\% - 90\%]}$$

for IR_{90} and γ for each individual can then be used to
estimate IR_{90}.

The 60-min sampling period was dictated by sensitivity of the
assay. Although we could consistently detect vecuronium until
complete recovery of twitch tension, we assumed that rapid decreases
in plasma concentration after small doses of vecuronium would prevent
detection of vecuronium after 60 min.

Table 3. “Typical” Values for the Pharmacodynamic Parameters Determined in a Population Analysis in a
Previous Study* in Which No Plasma Concentration Values
for Vecuronium Were Available

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_{eq} (adductor pollicis)</td>
<td>0.44</td>
</tr>
<tr>
<td>k_{eq} (laryngeal adductors)/k_{eq} (adductor pollicis)</td>
<td>2.48</td>
</tr>
<tr>
<td>γ (adductor pollicis)</td>
<td>6.16</td>
</tr>
<tr>
<td>γ (laryngeal adductors)/γ (adductor pollicis)</td>
<td>1.23</td>
</tr>
<tr>
<td>IR_{90} (adductor pollicis)</td>
<td>0.692</td>
</tr>
<tr>
<td>IR_{90} (laryngeal adductors)/IR_{90} (adductor pollicis)</td>
<td>1.36</td>
</tr>
</tbody>
</table>

*Both plasma concentration and effect data. The former approach requires
that we estimate both Cl and C_{90} correctly. Presumably we have sufficient data during onset and offset for each
participant to estimate C_{90} reliably. However, by sampling plasma for only 60 min, we cannot estimate vecuronium’s terminal half-life accurately and therefore
might overestimate vecuronium’s Cl. The potential for error in estimating Cl is suggested by differences in
these values when determined with the compartmental and noncompartmental models (table 1). If elimination
half-life is underestimated and Cl is overestimated, values of IR_{90} estimated from C_{90} and Cl might be overesti-
inated. Without direct measurement of IR_{90}, the magni-
tude of this potential error cannot be determined.

However, the values of IR_{90} estimated in the present study during propofol anesthesia (0.97 ± 0.31
$\mu g \cdot kg^{-1} \cdot min^{-1}$, 1.30 ± 0.41 $\mu g \cdot kg^{-1} \cdot min^{-1}$, or 1.08
± 0.74 $\mu g \cdot kg^{-1} \cdot min^{-1}$ based on the compartmental
model, the noncompartmental model, and the model
without plasma concentration data, respectively) are similar to the values estimated directly by Cannon et al.12
(0.92 ± 0.37 $\mu g \cdot kg^{-1} \cdot min^{-1}$) during fentanyl anes-
thesia, suggesting accuracy of our modeling approach.

Several of the pharmacodynamic values in the present
study (table 1) are similar to those from a previous
study2 (table 3) in which we analyzed data for adductor pollicis and laryngeal adductor twitch tension obtained
by Donati et al.14 in the absence of plasma concentra-
tion values. One exception is that the ratio of k_{eq} (lar-
yngeal adductors) to k_{eq} (adductor pollicis) was reported
previously as 2.48,2 a value larger than that estimated
either with or without plasma concentration values in
the present study (~1.5). The second exception is the
ratio of γ (laryngeal adductors)/γ (adductor pollicis),
reported as 1.23 in the previous study and ~0.6 in the
present study. Both these exceptions suggest that esti-

Anesthesiology, V 86, No 3, Mar 1997
imates for certain pharmacodynamic parameters for the laryngeal adductors were flawed in the previous study. Although there are several differences between the two studies (investigators, drug doses, volunteers versus patients), we speculate that the most important difference involves the signal-to-noise ratio for twitch tension of the laryngeal adductors. By studying volunteers in whom interferences such as electrocautery were eliminated and by modifying Donati et al.’s technique to monitor laryngeal muscle function, we obtained data for laryngeal adductor twitch tension that was affected minimally by noise. Because the parameter k_{oc} describes onset and offset of twitch depression, information regarding each of these phases is available only during the initial several minutes after drug administration and from the time of initial recovery until recovery is complete. Because of the brief duration of onset, any "noisy" signals during that period may markedly influence the ability to estimate k_{oc} and γ accurately. This difference between studies in k_{oc} (laryngeal adductors) and similarity between studies in k_{oc} (adductor pollicis) suggest further limitation to the utility of modeling without plasma concentration data—that estimates will be flawed if the signal-to-noise ratio for the effect measure is not large.

In the previous study that modeled adductor pollicis and laryngeal adductor twitch tension in the absence of plasma concentrations, we observed that IR_{50} differed as a function of the bolus dose of vecuronium. This dose-related change in pharmacodynamics was confirmed in the present study as a dose-related change in C_{50} in the analyses with plasma concentration data and a dose-related change in IR_{50} in the analyses without plasma concentration data and the noncompartmental approach. We cannot explain this observation.

One additional consideration arises from the analyses without plasma concentration data. Consider a study design in which a single effect is modeled with two exponentials (e.g., if we had measured only a single effect). The resulting analysis would yield two rate constants, one of which corresponds to the relation between dose and "concentration" in the driving compartment (analogous to $k_{elimination}$) and the other to the relation between concentration in the driving compartment and effect (analogous to k_{oc}). However, without plasma concentration data there is no means to identify which rate constant corresponds to $k_{elimination}$ and which to k_{oc}; this situation is similar to modeling pharmacokinetics of drugs given orally in which it is impossible to distinguish between the absorption and elimination rate constants. We overcome this problem by measuring two effects: one (or more) rate constants describe the relation between dose and the resulting driving compartment; the remaining two rate constants relate the common driving compartment to the two resulting effects. Finally, even if an analysis with only a single effect measure prevented identification of k_{oc} versus $k_{elimination}$, the resulting rate constants would be sufficient to describe the relation between dose and effect versus time.

We also note that in the analyses performed without plasma concentration data, despite estimates of k_{oc} for each of the muscle groups being flawed, the ratio of k_{oc} for the two muscle groups is estimated correctly (assuming that the values determined with plasma concentration data are correct). This supports our earlier claim that "any biases apply equally across muscle groups and should not, therefore, affect our conclusions (regarding the relative values of k_{oc})."

Additional investigations with different drugs and other effect measures are necessary to validate that modeling without plasma concentration provides pharmacodynamic results similar to those obtained with plasma concentration data. However, risks associated with blood sampling, expense of measuring plasma concentrations of drugs, and potential delays in drug development if sensitive or specific assays are not available suggest a potential role for modeling pharmacodynamics without plasma concentration data. Regardless, this new approach does not obviate the need for measurements of plasma concentration if the intent is to determine traditional pharmacokinetic parameters such as plasma clearance or volume of distribution.

In summary, we estimated pharmacodynamic parameters for vecuronium using a traditional approach requiring both measured values for plasma concentration and twitch tension and using a novel approach requiring only values for twitch tension. Estimates for certain pharmacodynamic parameters were similar using the two approaches, suggesting limited utility of measured values of the plasma concentration of the muscle relaxant. If future studies confirm that modeling without plasma concentration data yields reliable estimates for certain pharmacodynamic parameters, the utility of measuring...
PHARMACODYNAMIC MODELING

plasma concentrations of muscle relaxants and other drugs may be questionable.

The authors thank Lewis Sheiner, M.D., for assisting with pharmacodynamic modeling and Marie Lau, Ronald Brown, and Janos Szenohradszky, M.D., for assisting with data collection.

References

Anesthesiology, V 86, No 5, Mar 1997