A Better, Safer, and Inexpensive Way to Open Glass Ampules

To the Editor.—A recent contribution to the correspondence section of Anesthesiology discussed a potential patient care complication resulting from using the elbow of an anesthesia breathing circuit to open a glass ampule. During 25 yr of anesthesia practice, I have observed and used many different techniques in opening glass ampules. All of these have at one time or another resulted in failure, either allowing a spike of the ampule to penetrate the protective material and lacerate the practitioner or to permit pieces of broken glass to become airborne and threaten operating room personnel. The purpose of this communication is to describe a technique that I have personally used for more than 15 yr without injury. It involves using the barrel of an intravenous syringe (plunger removed) held over the small end of the ampule, close to the neck of the ampule, grasping the barrel with the thumb and forefinger of one hand and the large end of the ampule with the thumb and forefinger of the other hand (fig. 1). The barrel of a 10-cc syringe works best with larger ampules (10–20 cc such as propofol, saline, and 2% lidocaine), and the barrel of a 5-cc syringe works best with smaller ampules (1–2 cc such as epinephrine, epinephrine). The hardness of the plastic barrel prevents cut by penetration of glass from the ampule, the length of the barrel provides enhanced leverage for ease of breaking the ampule neck, and the capacity of the barrel allows the neck of the ampule and any associated glass particles to be trapped within the safety of the hard plastic barrel. Keeping the thumbs and forefingers of both hands close to the neck of the ampule (as pictured), allows the maximum of force to be delivered at the neck of the ampule. It is advised that when using this technique, the hands and device be pointed away from the practitioner, the patient, the surgical field, and any operating room personnel to enhance safety. Placing a single gauze 4 x 4 over the syringe barrel and ampule junction would provide added safety from airborne glass.

Clair S. Weenig, M.D.
Assistant Clinical Professor
Department of Anesthesia
University of California Medical Center, San Francisco
C-450 Box 0618
San Francisco, California 94143-0618

Reference
1. Gallacher BP, Kelly M, Mora RR: Failure to ventilate due to glass ampule fragment occlusion of the breathing circuit. Anesthesiology 1997; 87:180
(Accepted for publication November 17, 1997.)

Central Venous Access via the Distal Femoral Vein Using Ultrasound Guidance

To the Editor.—Central venous (CV) catheters are typically inserted via internal jugular, subclavian, or antecubital veins. The femoral vein also has been used, but its use of this site is sometimes problematic as a result of anatomic abnormalities, hematoma, and so on. Ultrasonic guidance recently has been reported as a useful aid for internal jugular or subclavian cannulation. Accordingly, we have developed a new technique for inserting CV catheters at a new distal femoral vein site.

After institutional approval, 20 patients undergoing neck, facial, and brain surgeries were selected for this study. After the induction of general anesthesia, a femoral vein catheterization was performed by the same staff anesthetist, who was familiar with standard femoral