CORRESPONDENCE

Anesthesiology
1997, 86:1215
© 1997 American Society of Anesthesiologists, Inc.
Lippincott-Raven Publishers

Breaking Glass Vials

To the Editor.—Most anesthesia and resuscitation drugs now are supplied in prescratched, easy-to-break vials. However, opening an unscratched vial necessitates the use of a metal file, which is small and not always available, especially during an emergency. Scratching the neck of one vial with the base of another (fig. 1) allows easy opening of any vial. We have used this method during the past 2 years without any failure. Especially in times of emergency, it may be helpful.

Yitzhak Cohen, M.D.
Lucio Glantz, M.D.
Tiberiu Ezri, M.D.
Department of Anesthesia
Kaplan Hospital
P.O.B. 1, Rehovot 76100
Israel

![Image of a vial being scratched](https://example.com/vial_scratching.jpg)

Fig. 1. Scratching a glass vial using another one. The base of one vial is applied forcefully to the neck of the vial to be opened, at an angle of about 45°. Moving one vial against the other scratches the vial's neck, allowing easy breakage and opening.

(Accepted for publication February 4, 1997)

To the Editor.—Kopman et al. have performed a very valuable service in examining the incidence of residual neuromuscular paralysis after the use of mivacurium and pancuronium. It is time that the many reports describing the high incidence of residual block after the use of pancuronium were put to scrutiny by a carefully performed clinical investigation. They demonstrated what can be achieved by a select group of careful and experienced clinicians interested in muscle relaxants when neuromuscular block is controlled using train-of-four (TOF) monitoring and when reversal is attempted with sufficient doses of anticholinesterases given at the appropriate time. The questions are 1) Can their results be achieved by everyone? 2) Are they good enough? 3) Will they save money?

The principal finding of the study was that, on arrival in postanesthesia care unit (PACU), the incidence of residual neuromuscular paralysis was low. TOF ratios averaged 0.93 after mivacurium and 0.85 after pancuronium; 54 of 56 patients given pancuronium had TOF ratios of \(\geq 0.7 \). At first glance, this level of neuromuscular recovery after long-acting relaxants is much greater than previously reported by several investigators since Vibly-Mogensen et al. in 1979. Our own studies in Montreal showed that 17 of 47 adults given pancuronium had TOF < 0.7 when tested in PACU compared with only 2 of 46 given atracurium and 5 of 57 given vecuronium. The difference, however, may be the time between reversal of block and neuromuscular testing in PACU. Kopman et al. tested patients given pancuronium at 30 min and those given mivacurium at 19.7 min after reversal. In our studies in Montreal, adults were tested 13–15 min after reversal, and children were tested 15–18 min after reversal. A more recent study in Vancouver, examining residual block after mivacurium, tested adults at 12–14 min and children at 8–9 min. Kopman et al. showed that 10 min after reversal, the mean TOF ratio in patients given pancuronium was 0.65. The results are very similar. It is likely that by administering muscle relaxants and their antagonists