Treatment of Incomplete Analgesia after Placement of an Epidural Catheter and Administration of Local Anesthetic for Women in Labor

Yaakov Belin, M.D.,* Jeffrey Zahn, M.D.,† Howard H. Bernstein, M.D.,‡ Barbara Zucker-Pinchoff, M.D.,§ Wendy J. Zenzen,|| B.S., Lewis A. Andres, B.A.#

Background: Approximately 15% of women still have pain after placement of an epidural catheter and administration of local anesthetic for labor analgesia. Two techniques frequently used to treat this pain were compared: (1) withdrawal of the catheter 1 cm and repeated dosing with additional local anesthetic, and (2) repeated dosing with additional local anesthetic without any catheter manipulation.

Methods: Fifteen minutes after placement of a multi-orifice epidural catheter 5 cm into the epidural space and administration of 15 ml 0.25% bupivacaine to the parturient in labor, the adequacy of analgesia was assessed. All women who had incomplete analgesia were randomized (first intervention) to receive an additional 5 ml 0.25% bupivacaine (local-anesthetic-only group) or to receive 5 ml 0.25% bupivacaine after first withdrawing the epidural catheter 1 cm (catheter-manipulation group). If after 15 min the woman still had pain, then (second intervention) the catheter was withdrawn 1 cm and an additional 5 ml 0.25% bupivacaine was administered to the local-anesthetic-only group, whereas 5 ml 0.25% bupivacaine was given to the catheter-manipulation group without further catheter manipulation. The success rate of the second intervention was assessed 15 min later.

Results: Seventy-eight women were enrolled in the study, 39 to each group. In the local-anesthetic-only group, 29 (74%) women were successfully treated with the first intervention and the remaining 10 (100%) were successfully treated with the second intervention. In the catheter-manipulation group, 30 (77%) were successfully treated with the first intervention and 7 (100%); 2 patients were not studied because of investigator error) were successfully treated with the second intervention (P = NS).

Conclusions: Administration of additional local anesthetic without first withdrawing the epidural catheter will effectively treat most women for whom analgesia is incomplete after the placement of an epidural catheter during labor. (Key words: Complications; obstetrics; pain; regional anesthesia.)

EPIDURAL anesthesia is a popular mode of pain relief for women in labor. However, 10–15% of all epidural anesthetics result in incomplete pain relief.1 The residual pain is often localized to one or two dermatomes on one side of the abdomen and is probably due to inadequate spread of local anesthetic within the epidural space.2 Different treatment methods have been recommended for this residual pain: (1) administration of supplemental doses of local anesthetic after withdrawing the epidural catheter 1 cm,3 (2) administration of supplemental doses of local anesthetic without withdrawing the epidural catheter,4 and (3) immediate replacement of the epidural catheter.** Those who suggest that the anesthesiologist should administer supplemental doses of local anesthetic, with or without withdrawing the epidural catheter, contend that attempts should be made to obtain adequate analgesia without subjecting the patient to another procedure, such as epidural catheter replacement. On the other hand, those who suggest immediate replacement of the epidural catheter argue that administration of more local anesthetic, with or without repositioning of the...
catheter, is unlikely to succeed and will only prolong
the woman’s discomfort. None of these treatment rec-
omendations are based on scientific study, nor have
any of these treatment protocols been compared with
each other. If the success rate of the first two options
is acceptable and can be accomplished quickly, then it
would make sense not to subject the woman to another
procedure.

The purpose of this study was to determine the effect-
tiveness of supplemental administration of local anes-
thetic with or without withdrawing the epidural cathe-
ter when patients experience inadequate analgesia after
epidural catheter insertion and administration of local
anesthetic, and to determine which of the two has a
greater success rate.

Methods

The protocol was approved by our institutional re-
view board, and written, informed consent was ob-
tained from each parturient before the epidural catheter
was placed. Women in active labor who were having con-
tractions at least once every 5 min, who had no con-
traindication to epidural analgesia, and who re-
quested epidural analgesia were enrolled in this pro-
spective, randomized, and blinded study. Women with
spinal column disorders including scoliosis and herni-
ated discs, and women who had undergone spinal sur-
gery were excluded from participation.

All epidural catheters were placed with the woman
in the sitting position. Using an 18-gauge Hustead need-
le, the epidural space was identified via a midline
approach at the L2–3 or L3–4 interspace using the loss-
of-resistance-to-air technique. After the epidural space
was located, a 20-gauge multiple-orifice catheter (Peri-
fix; B. Braun Medical, Bethlehem, PA) was threaded
through the cranially directed tip of the epidural needle
to a depth of 5 cm into the epidural space. No local
anesthetic was injected through the epidural needle
before epidural catheter placement.

While the woman was still sitting, attempts to aspirate
blood or cerebrospinal fluid via the catheter were made
using a 3-ml syringe. If there was no aspirate, a 3-ml
test dose of 0.25% bupivacaine without epinephrine
was administered through the catheter. The presence
of clinical signs of an intravascular injection were
sought for the following 2 or 3 min by asking the
woman if she felt dizzy, had tinnitus, or had a metallic
taste in her mouth. If there were no signs of an intravas-
cular injection, the catheter was secured with a Tega-
derm (3M Health Care, St. Paul, MN) transparent dress-
ing and the woman was placed in the supine position
with left uterine displacement. Five minutes after the
test dose, if there were no clinical signs of subarachnoid
injection as evidenced by the woman’s ability to move
her legs and the absence of hypotension, an additional
10 ml 0.25% bupivacaine was administered in two di-
vided doses 5 min apart. If the epidural catheter had
been placed into the intravascular space, the catheter
was removed and the procedure was repeated at a dif-
ferent interspace. If the catheter had been placed in
the subarachnoid space, the patient was withdrawn
from the study.

The adequacy of analgesia was assessed 15 min after
the last dose of local anesthetic had been administered.
Analgesia was assessed by asking the woman if she felt
any pain at the peak of a contraction. If she said that
she still had pain, she was asked to point to the location
of the pain and to quantify the amount of pain by using
a verbal 0 to 10 score, with zero being “no pain” and
10 being the “worst pain imaginable.” She was in-
structed to indicate only if she had pain, not if she felt
pressure. The presence and location of any nonanesthe-
tized area was confirmed by the anesthesiologist using
an alcohol swab to look for differences in cold percep-
tion. Confirmed unsatisfactory sensory blockade was
classified as complete (failed epidural) if the patient had
no areas of sensory blockade, and incomplete if the
woman had “missed segments” localized to one side.

If the woman did not state that she had any pain or
if she had a failed epidural catheter, she was not en-
rolled in the study. If the woman said that she had pain
and it was classified by the anesthesiologist as incom-
plete, she was entered into the study and was random-
ized to one of the two treatment groups. All women
were turned to the lateral decubitus position with the
painful side in the dependent position. The woman
(first intervention) received 5 ml 0.25% bupivacaine (lo-
cal-anesthetic-only group), or the anesthesiologist first
withdrew the epidural catheter 1 cm, so that 4 cm of
epidural catheter remained in the epidural space, and
then administered 5 ml 0.25% bupivacaine (catheter-
manipulation group). In both cases, the anesthesiologist
“manipulated” the tape on the woman’s back before
injection of the local catheter so that she was blinded
to her group assignment. The randomization sequence
used was generated by a table of random numbers. If
the random number was odd, the patient was assigned
to the local-anesthetic-only group, and if the random

Anesthesiology, V 88, No 6, Jun 1998

1503
number was even the patient was assigned to the catheter-manipulation group. The results of the randomization were sealed in opaque envelopes and opened sequentially by the anesthesiologist only after the woman developed incomplete analgesia.

Fifteen minutes after the first intervention, the woman was assessed by a second anesthesiologist who was blinded to the woman's group assignment to determine the success of the treatment. This anesthesiologist asked the woman if she still had pain, asked her to quantify the pain on the same 0–10 scale, and to localize the pain. If the woman did not say that she had pain, the study was complete. If the woman still stated that she had pain, the study was continued in a blinded manner by the first anesthesiologist. If the woman was in the local-anesthetic-only group, the anesthesiologist (second intervention) withdrew the catheter 1 cm so that 4 cm of epidural catheter remained in the epidural space and then administered another 5 ml 0.25% bupivacaine. If the woman was in the catheter-manipulation group, then the anesthesiologist administered 5 ml 0.25% bupivacaine without further catheter manipulation. In either case, the anesthesiologist manipulated the tape on the woman's back before injecting the local catheter so that she remained blinded to her group assignment. Fifteen minutes after the second intervention, the woman was again evaluated as described before by the second anesthesiologist and the study was complete. Further treatment, if necessary, was at the discretion of the anesthesiologist.

Statistical Analysis
Data were analyzed with chi-square tests to compare the success rates between the groups. Probability values <0.05 were considered significant.

Results
Six hundred thirty-nine women were enrolled and 78 (12.2%) who had incomplete analgesia 15 min after 15 ml 0.25% bupivacaine was given were studied. Thirty-nine women were randomized to the local-anesthetic-only group and 39 to the catheter-manipulation group. Mean height and weight and median initial pain scores, after 15 ml bupivacaine but before the first intervention, were similar in the two groups of patients. In all women and within each group, right-sided incomplete analgesia (n = 63) occurred more often than left-sided incomplete analgesia (n = 15) (table 1).

Overall, 59 of 76 (75.6%) of the women were successfully treated after the first intervention, 29 of 39 (74%) in the local-anesthetic-only group and 30 of 39 (77%) in the catheter-manipulation group (P = Ns). The 95% CI for the 3% difference between these success rates (77% vs. 74%) is 9 (confidence limits, -6% to 12%). Thus our sample size was sufficiently large to demonstrate that withdrawing the epidural catheter does not produce a clinically important improvement in success compared with administering local anesthetic alone (i.e., at most 12%). Because of investigator error, the second intervention was not performed in two women in the catheter-manipulation group. In the local-anesthetic-only group, all 10 women were successfully treated after the second intervention; in the catheter-manipulation group, all seven remaining women were successfully treated after the second intervention (table 2). One woman, 5 h after the study protocol was complete, required replacement of the epidural catheter. She was originally randomized to the catheter-manipulation group.

Discussion
The cause of unblocked dermatomes after the placement of an epidural catheter and administration of local anesthetic is unknown. Proposed theories include slow injection of small volumes of local anesthetic, the presence of an epidural septum, midline adhesions, placement of the epidural catheter through an intervertebral
Table 2. Treatment Success Rates in Each Group

<table>
<thead>
<tr>
<th></th>
<th>Local Anesthetic Only</th>
<th>Catheter Manipulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Success after initial</td>
<td>29/39 (74%)</td>
<td>30/39 (77%)</td>
</tr>
<tr>
<td>intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of patients requiring</td>
<td>10</td>
<td>7*</td>
</tr>
<tr>
<td>2nd intervention</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain score before 2nd</td>
<td>n = 29</td>
<td>n = 30</td>
</tr>
<tr>
<td>intervention</td>
<td>n = 0</td>
<td>n = 0</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 or 3</td>
<td>n = 4</td>
<td>n = 4</td>
</tr>
<tr>
<td>4 or 5</td>
<td>n = 3</td>
<td>n = 1</td>
</tr>
<tr>
<td>6 or 7</td>
<td>n = 2</td>
<td>n = 4</td>
</tr>
<tr>
<td>8</td>
<td>n = 1</td>
<td>n = 0</td>
</tr>
<tr>
<td>9</td>
<td>n = 0</td>
<td>n = 1</td>
</tr>
<tr>
<td>10</td>
<td>n = 0</td>
<td>n = 0</td>
</tr>
<tr>
<td>Success after 2nd intervention</td>
<td>10/10 (100%)</td>
<td>7/7 (100%)</td>
</tr>
<tr>
<td>Replaced catheters</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

* Two patients were not studied due to investigator error.

Reasons for this finding are unclear but may be related to the fact that all patients were placed with left uterine displacement immediately after the epidural catheter was secured. However, we believe this unlikely to be the mechanism because it is controversial whether patient position affects the quality of epidural analgesia. Another hypothesis for the greater incidence of right-sided incomplete analgesia is that epidural catheters tend to deviate to the left more often than to the right. Indeed, Gielen et al. in a radiographic study of epidural catheters, found that the catheter deviated to the left more often than to the right.

The two techniques evaluated in our study, administration of more local anesthetic without first withdrawing the epidural catheter, and administration of more local anesthetic after withdrawing the epidural catheter, both had high success rates with the first intervention, 74% and 77%, respectively. After the second intervention, both groups achieved a 100% success rate. Our results indicate that it was an increase in the volume of local anesthetic that corrected the incomplete analgesia during the first intervention and not withdrawal of the epidural catheter. This would also appear to be the case after the second intervention, but we cannot state this definitively from our data.

In our study population, only one epidural catheter was replaced for inadequate analgesia, and that occurred 5 h after the study was completed. Because it occurred so long after the protocol was completed, we do not consider that this was related to the study protocol and believe that it might have occurred even if the catheter had been replaced at the beginning of the study.

This study did not assess the best treatment option if a woman has no areas of sensory blockade after the placement of an epidural catheter and administration of local anesthetic (failed epidural). A failed epidural may occur if the catheter is not in the epidural space, there is a mechanical problem with the catheter, or the dose of local anesthetic is inadequate.

Our study did not evaluate immediate replacement of the epidural catheter when incomplete analgesia occurs. This option was not included because our clinical experience has been that most patients who develop incomplete analgesia can be managed without catheter replacement. Potential complications associated with catheter replacement can be avoided if analgesia can be otherwise obtained. On the other hand, if analgesia is delayed, and certainly if it is never achieved, then it would have been worthwhile to

Anesthesiology, V 88, No 6, Jun 1998
replace the catheter immediately. We found that approximately 75% of women had complete analgesia with the first intervention and all had complete analgesia with the second intervention. In our protocol, the longest period that a woman waited for complete analgesia (after diagnosis of the problem) was an additional 30 min (and most only waited 15 min). The exact time it takes to replace and repeat the dose of anesthetic for an epidural catheter varies, but 15–30 min is a reasonable estimate.

In conclusion, after placement of an epidural catheter and administration of local anesthetic to a woman during labor and analgesia is incomplete, we recommend that the next step be administration of additional local anesthetic without catheter replacement or manipulation.

The authors thank James B. Eisenkraft, M.D., Professor of Anesthesiology and Director of Anesthesia Research at the Mount Sinai Medical Center, New York, New York, for critically reviewing this manuscript; and Carol A. Bodian, Dr.P.H., for help with the statistical analyses.

References

