Endovascular Aortic Aneurysm Repair in a Patient with Prohibitive Cardiopulmonary Risk

Richard J. Novak, M.D.,* Bradley B. Hill, M.D.,† Peter J. Schubart, M.D.,§ Thomas J. Fogarty, M.D.,∥ Christopher K. Zarins, M.D.¶

ENDOVASCULAR abdominal aortic aneurysm (AAA) repair is a minimally invasive approach that does not require laparotomy. Multiple surgical trials have investigated a variety of aortic stent graft designs. The AneuRx stent graft (Medtronic, Inc., Minneapolis, MN) is a new modular, self-expanding endoluminal graft. The device is currently in the final stages of evaluation by the Food and Drug Administration. This article describes the perioperative management of a high-risk patient who was treated with the AneuRx endoluminal stent graft system.

Case Report

A 77-yr-old man presented with an enlarging 7.5-cm infrarenal AAA. Two months before surgery, the patient underwent cardiac arrest during a coronary angiogram that revealed a high-grade stenosis of the left anterior descending coronary artery that was not amenable to angioplasty. After resuscitation, a myocardial infarction was confirmed by creatine phosphokinase isoenzyme elevation. He was deemed to be too high risk for coronary bypass. He also suffered from severe chronic obstructive pulmonary disease and required nightly oxygen at 2 l/min by nasal cannula. The forced expiratory volume in 1 s was 0.55 l, and forced vital capacity was 1.66 l. Blood gas analysis while breathing room air showed a pH of 7.37, carbon dioxide partial pressure of 58 mmHg, and oxygen partial pressure of 59 mmHg. The patient was taking aspirin 325 mg/day, and the bleeding time was 9.5 min. Echocardiogram showed left ventricular hypertrophy, and ejection fraction was within normal limits. Spiral computed tomography scan of the abdomen and pelvis showed an infrarenal AAA with a 20-mm diameter, 2-cm-long proximal neck, and normal common iliac arteries (fig. 1).

Written informed consent from the patient and institutional review board approval were obtained. The procedure was performed in an operating room. The day of surgery, radial artery catheterization was performed; general anesthesia was induced with 70 mg propofol, 50 μg fentanyl, and 10 μg vecuronium; and the trachea was intubated. A pulmonary artery catheter was placed. Anesthesia was maintained with 0.5% isoflurane, 50 μg·kg⁻¹·min⁻¹ propofol, oxygen, air, and a total of 150 μg fentanyl.

The surgical procedure was as follows. Both common femoral arteries were exposed through 3-cm oblique groin incisions. Introducer sheaths were inserted into both common femoral arteries over guidewires, and 100 U/kg heparin was administered intravenously. For selecting the appropriate size of device, intravascular ultrasound (Sonitcath Ultra 6, 20-MHz imaging catheter; Meditech, Boston Scientific Corp., Watertown, MA) was used to measure the diameter of the infrarenal aorta just distal to the renal arteries (22 mm) and the diameters of the common iliac arteries (12 mm bilaterally). Length measurements from the renal arteries to the aortic bifurcation and from the renal arteries to the origins of the internal iliac arteries were also made (11 cm and 15 cm, respectively). A 13.5-cm-long, modular, bifurcated AneuRx endoluminal graft with a 24-mm diameter proximal aortic end and a 14-mm diameter distal iliac end was selected (fig. 2). The graft size selected was approximately 15% greater in diameter than the measured proximal aorta and distal iliac sizes. Each component consisted of a thin-walled, noncrimped, woven polyester graft with a self-expanding nickel-titanium (nitinol) exoskeleton. Proximal and distal extender cuffs were available in different lengths and diameters if needed to obtain a "best fit." Femoral sheaths were exchanged for larger
CASE REPORTS

...tion for AAA repair in this patient is aneurysm size alone. If untreated, the typical expansion rate for this patient’s 7.5-cm AAA would be 0.5–1 cm/yr, and the rate of rupture within 5 yr would be 25–43%. The patient’s medical comorbidities place him at high risk for elective aneurysm repair, with a predicted operative mortality rate of 8–30%.

Elective repair is crucial because even in low-risk patients, operative mortality for attempted repair of a ruptured AAA is 25–70%. Endovascular AAA repair is an attractive alternative to open aneurysm repair in this case because it does not require laparotomy or retroperitoneal dissection.

Food and Drug Administration–approved clinical trials are underway to evaluate the safety and efficacy of several different aortic stent graft systems. A multicenter phase I and II clinical trial compared 190 patients who underwent AAA repair using the AneuRx endoluminal graft with 60 patients who underwent open repair.

Fig. 1. Three-dimensional reconstruction of the blood flow lumen from a spiral computed tomography angiogram depicts an infrarenal abdominal aortic aneurysm.

Fig. 2. The AneuRx modular aortic stent graft consists of a primary aorto-iliac component and a contralateral limb that fuse together to form a bifurcated endoluminal graft as shown. Each component consists of a thin-walled, noncrimped, woven polyester graft with a self-expanding nickel-titanium (nitinol) exoskeleton. Primary modules, iliac limbs, and proximal and distal extender cuffs are available in different lengths and diameters to obtain a “best fit.”
patient in the present case report was a participant in this clinical trial. Patients who had endoluminal repair had reduced morbidity and time to extubation, less operative blood loss, and decreased length of stay in the intensive care unit and hospital. Major morbidity occurred in 23% of patients who had open repair compared with 12% who had endovascular repair \((P < 0.05)\). There were no aneurysm ruptures and no conversions to open repair in the AncuRx-treated group.

Brewster et al.\(^6\) compared 30 endovascular AAA repairs to a matched concurrent cohort of open repairs. Endovascular procedures were associated with significantly less operative blood loss, decreased lengths of stay in the intensive care unit and hospital, and quicker patient recovery.

Not all reports of endovascular AAA repair describe such favorable results. Mialhe et al.\(^6\) reported a series of endovascular AAA repair with an in-hospital mortality of 25% in patients with American Society of Anesthesiologists physical status 3 and 4. Baker et al.\(^1\) analyzed anesthetic care in a series of 100 patients who had endoluminal graft placement (97 AAA and 3 thoracic aortic aneurysms) using a Dacron-covered stent with hooks at either end. The deployment procedure required balloon dilation for 30–60 s, which temporarily occluded aortic blood flow. In this series, 14% of patients required conversion to open repair, 36% required postoperative ventilation in the intensive care unit, and 18% had a hemoglobin level < 8 g/100 ml intraoperatively or postoperatively. Postoperative in-hospital complications included respiratory dysfunction (16%), congestive heart failure (11%), acute renal failure requiring dialysis (9%), and cerebral vascular accident (2%). Median length of stay in hospital was 10 days. Complications associated with endovascular AAA repair may be closely related to device limitations and surgeon experience.

Similarly, a review of 669 attempted AAA repairs using the EVT endoluminal aortic graft (Endovascular Technologies, Menlo Park, CA) showed a mortality rate of 1.5% for all patients who underwent endoluminal aortic graft placement. Mortality rates were higher for patients who required conversion to open repair at the time of initial operation (11%) and for patients who required conversion at a later time (7%). The investigators concluded that device improvement and operator experience are critical for minimizing morbidity and mortality associated with immediate and late device explantation.\(^1\)

Significant blood loss can occur during endovascular AAA repair. Zarins et al.\(^1\) compared endovascular repair to open AAA repair and found less estimated blood loss associated with endovascular repair (641 ml vs. 1,596 ml; \(P < 0.001\)). During endovascular repair, blood is lost through 16–22-French or larger femoral artery sheaths as guidewires, catheters, and devices are inserted and removed through leaky valves. Vigilance regarding hypovolemia is required. The procedure is performed using fluoroscopic guidance in a darkened room. The image intensifier tube is positioned over the abdomen, blocking the anesthesiologist’s view of the femoral area, which makes estimation of ongoing blood loss difficult. Quantification of blood loss requires that the surgeon collect all arterial blood spillage into an underlying basin, which can then be suctioned into a cell saver or suction bottle. Walker et al.\(^1\) compared blood product requirements in a series of 132 patients who had endovascular AAA repair with a historic cohort of patients who had open AAA repair. Approximately the same percentage of patients required blood transfusion in both groups: 62% (82 of 132) for endovascular repair versus 77% (27 of 35) for open repair \((P = 0.4)\).

Endovascular AAA repair is likely to become more widespread, and anesthesiologists need to be informed of the procedure and how it differs from open AAA repair. Endovascular treatment of AAA in patients with prohibitive risks for open repair is possible with low morbidity.

The authors thank Dr. Larry Saldman for his review of the manuscript and numerous suggestions.
References

Intraoperative Anaphylactic Shock from Bacitracin Nasal Packing after Septorhinoplasty

Richard Gall, M.D.,* Brian Blakley, M.D., Ph.D.,† Richard Warrington, M.B.B.S., Ph.D.,‡ Dean D. Bell, M.D.§

ANAPHYLAXIS is a life-threatening immunologically mediated reaction related to the administration of a sub-
stance that causes mast cell degranulation. We report a case of life-threatening anaphylaxis after topical application of bacitracin to the nasal mucosa at the conclusion of an anesthetic.

Case Report

A 48-yr-old man with a history of traumatic nasal deformity and nasal obstruction was scheduled to undergo septorhinoplasty as a same-day admission. He had a history of hypertension but had not taken his prescribed dose of hydrochlorothiazide the morning of surgery. He was otherwise healthy, reported no allergies, and weighed 98 kg.

In the operating room, electrocardiogram, pulse oximetry, and non-invasive blood pressure monitoring were established. Midazolam 2 mg was administered intravenously, and induction proceeded with propofol 200 mg, sufentanil 25 μg, rocuronium 4 mg, and succinylcholine 130 mg. Anesthesia was maintained with isoflurane and nitrous oxide.

* Resident, Department of Otolaryngology.
† Professor, Department of Otolaryngology.
‡ Professor, Department of Medicine.
§ Assistant Professor, Department of Anesthesia.

Received from the Departments of Otolaryngology, Medicine, and Anesthesiology, University of Manitoba Health Sciences Centre, Winnipeg, Manitoba, Canada. Submitted for publication April 14, 1999. Accepted for publication June 22, 1999. Support was provided solely from institutional and/or departmental sources.

Address reprint requests to Dr. Bell: St. Boniface General Hospital, D2020, 409 Tache Avenue, Winnipeg, Manitoba, Canada R2H 2A6. Address electronic mail to: deanbell@compuserve.com

Key words: Allergy; antibiotic; prophylaxis; topical.

Anesthesiology, V 91, No 5, Nov 1999