Epileptiform Discharges during 2 MAC Sevoflurane Anesthesia in Two Healthy Volunteers

Kaike K. Kaisti, M.D.,* Satu K. Jalässeläinen, M.D.,† Juha O. Rinne, M.D.,‡ Liisa Metsähonkala, M.D.,§ Harry Scheinin, M.D.‖

VOLATILE anesthetics have divergent effects on cerebral neuronal activity; they suppress general activity, but may also have proconvulsant properties.1 For example, the ability of enflurane to produce epileptic activity clearly is increased when it is administered at high concentrations with simultaneous hypocarbia,2 and it has even been used for diagnostic activation of epileptic foci.3

Sevoflurane is a recently introduced volatile anesthetic. It is not considered to be epileptogenic but, in some animal models, has shown proconvulsant properties.4,5 We report herein two electroencephalographic (EEG)–verified cases of epileptiform activity during the study of the effects of sevoflurane anesthesia on regional cerebral blood flow (rCBF). Assessments of rCBF were made using positron emission tomography (PET) with injections of 15O labeled water. Epileptiform discharges were noticed in two of eight subjects studied at 2 minimum alveolar concentration (MAC) anesthesia. The volunteers were young, right-handed, nonsmoking, male medical students. Prestudy evaluation, which included laboratory data and electrocardiograms (ECG), did not reveal any abnormal findings. The local ethics committee approved the study protocol and all subjects gave written, informed consent. Both subjects in this report confirmed having no personal or family history of seizure activity, neurologic symptoms, or drug allergies and that they were not taking any medications.

Study Protocol

The subjects received no premedication and anesthesia was induced via mask with 7% sevoflurane in 100% oxygen. After the loss of eyelid reflex, subjects were administered 0.6 mg/kg rocuronium intravenously and a laryngeal mask was placed. Muscle relaxation was maintained with bolus doses of 10 mg intravenous rocuronium so that there was no more than one or two twitches to train-of-four nerve stimulation of the ulnar nerve at the wrist. A semiclosed ventilator system was used with 2.5 l of fresh gas flow of 30% oxygen-air mixture. The ETCO2 was kept at 4.5% by adjusting the tidal volume. Breathing frequency was set to 15 min−1.

In each subject, rCBF was assessed while the patient was awake and during anesthesia at 1 MAC, 1.5 MAC, and 2 MAC sevoflurane. The end-tidal concentration of anesthetic was increased in 0.5% steps at 30-min intervals, and two PET scans were obtained at 10-min intervals at the end of each level. During the flow scans, arterial radioactivity was measured with an on-line detector (Scanditronix, Uppsala, Sweden). The correction for delay and dispersion of the input function was made according to Iida et al.6 The flow was calculated pixel by pixel using the autoradiographic method to attain para-
At the time of seizure, heart rate increased temporarily from 60–65 bpm to 135% compared with baseline values. End-tidal carbon dioxide (ETCO₂) increased from 33.8 mmHg (whereas measured arterial partial pressure of carbon dioxide [Paco₂] = 34.2 mmHg). Nasopharyngeal temperature was 36.0°C. The subject woke and recovered normally and was discharged 3.5 h after removal of the laryngeal mask airway.

Before the induction of anesthesia, the EEG (fig. 1) showed slight general slowing. During the anesthesia, there was normal slowing of the EEG, and burst suppression appeared at the 1.5-MAC level. The BIS was reduced to 0–6 at the 2.0-MAC level. Two epileptiform discharges were recorded at the 2.0-MAC level of anesthesia without any clinical signs of an epileptic seizure. The BIS increased during both discharges, with recorded maximum values of 73 and 53.

The PET data (fig. 2) showed that, at the 2-MAC level, rCBF reduced to 40–50% of the baseline values. The second flow scan at 2 MAC was obtained after the first epileptic discharge, and rCBF values were 30–109% compared with baseline values, with clear increases in the right hemisphere.

The control EEG showed no epileptiform activity during sleep but, during wakefulness, the same mild, general slowing of background EEG activity was seen. The native and contrast-enhanced magnetic resonance images (1.5T) of the brain and the results from thorough clinical neurologic examination were normal.

Discussion

We report epileptiform activity in two of eight healthy volunteers exposed to approximately 4% end-tidal sevoflurane. There are at least three previously reported cases of EEG discharges and two cases of epileptic seizures in clinical patients anesthetized with sevoflurane. One pediatric patient with epilepsy was the only one with histories of neurologic symptoms.⁹ They had EEG-verified discharges during mask induction. In a young girl, an epileptic discharge was seen on a peroperative EEG during maintenance of hypotensive anesthesia for spinal fusion, with a sevoflurane concentration of 7%.¹⁰ In another young girl, seizure occurred during mask induction of anesthesia for plastic surgery and, because it was resistant to medication, caused discontinuation of anesthesia.¹¹ In an appendectomy patient, the patient’s left hand became spastic during maintenance, and tonic–clonic convulsion started when the patient was administered neostigmine at the end of the operation.¹² In all five cases, postoperative recovery and neurologic examination results were normal. There was no significant hypocapnia reported in any of the cases.
In the current study, sevoflurane was the only centrally active drug. The ETCO₂ and mean arterial pressure values were unremarkable in both cases. All PET studies were performed in a dimly lit room with no sudden loud noises. Subjects also wore earplugs and their ears were covered with a plastic head holder. Equipment for monitoring muscle relaxation and blood pressure were inactive when the discharges began.

Sevoflurane, 4%, and the total absence of surgical stimulation produced a state of burst suppression, with relatively long isoelectric episodes seen on the EEG. The visual appearance of these bursts had similar excitatory features as the bursts during deep enflurane anesthesia. ¹³

During the epileptiform discharges the BIS value increased markedly. Simultaneously, the discharge activity was also visible on the raw EEG display of the monitor. We, therefore, suggest that when using on-line electrophysiologic monitoring devices, such as the BIS, the raw EEG signal should be checked if the derived parameters behave inconsistently.

Previously, PET and single photon emission computed tomography have been used to study regional cerebral flow and metabolism of epileptic patients and to locate epileptic foci for possible operative treatment. In comparison to normal brain tissue, the area of epileptic focus has decreased rCBF and regional metabolism interictally and increased ictally. ¹⁴ Our findings of increased rCBF

Anesthesiology, V 91, No 6, Dec 1999

![Fig. 1. Electroencephalograms (EEGs) (four-channel montage) in two healthy subjects showing activity awake, during anesthesia, and at the beginning of epileptiform discharges. Before the seizure, the EEG of the first subject showed a burst-suppression pattern with long suppression periods of up to 40 s. Ictal EEG showed rhythmic epileptiform discharge in the theta–delta frequency range, first in the left hemisphere for 100 s, and immediately thereafter for 80 s in the right hemisphere. Before the induction of anesthesia, the EEG of the second subject showed slight general slowing in the form of poorly organized, mixed beta–alpha–theta activity in the occipital derivations, and an increase of diffuse theta activity, with a slight predominance on the right side. Two partial, secondarily generalized electroencephalographic discharges lasted for 2 and 3 min, respectively, and they occurred 8 min apart. The first epileptiform discharge of the second subject began in the right hemisphere as a low-voltage beta rhythm that rapidly generalized and, at the same time, slowed down and increased in amplitude. The second epileptiform discharge started in the left hemisphere, and also spread to the other side.](http://anesthesiology.pubs.asahq.org/pdfaccess.ashx?url=/data/journals/jasa/931251/ on 11/22/2018)
correlate well with simultaneous EEG data and agree with previous studies.

We conclude that sevoflurane appears to have epileptogenic potential in healthy patients during burst-suppression anesthesia. Although the implications of our findings are unclear, experimental data indicate that prolonged epileptiform discharge itself may be harmful. Therefore, further human studies are warranted.

References

Fig. 2. H₂¹⁵O positron emission tomography images at 7 cm above the orbitomeatal line of two healthy subjects, showing regional cerebral blood flow (rCBF) while awake and during sevoflurane anesthesia. During 2 MAC anesthesia, rCBF was uniformly reduced in both subjects. In the first case, epileptic discharges concerned both hemispheres caused a symmetric increase in the simultaneous flow scan at 3.1% sevoflurane. In the second case, epileptic discharge in the right hemisphere caused an ipsilateral increase in the immediately postictal flow scan at 4% sevoflurane.