Postoperative Metastasis Risk: More Than Immunosuppression

To the Editor—An increase in the rate of development of tumor metastasis, controversially attributed to immune suppression related to various aspects of surgery and anesthesia, has been reported for years and is discussed in an article and commentary that appeared in the September 1999 issue of ANESTHESIOLOGY. However, it is important to point out that facilitation of metastasis can occur independent of immune mechanisms. Indeed, metastasis can be stimulated by the removal of an angiogenesis inhibitor (such as angiostatin) along with the primary tumor (as reviewed in Cramer). (Angiostatin is a naturally occurring protein shown in animal experiments to strongly suppress metastasis.)

It seems imperative that continued research into the traditional areas of immune suppression/modulation must be coupled with more recent findings (e.g., angiogenesis inhibitors) if we are to truly understand the pathobiology of perioperative metastasis. Such integrated research seems necessary if we are to devise effective clinical strategies to decrease the incidence of postoperative metastasis.

Kenneth E. Shepherd, M.D.
Assistant Professor of Anesthesia
Harvard Medical School
Department of Anesthesia and Critical Care

References


(Accepted for publication January 10, 2000.)
Anesthesiology, V 92, No 5, May 2000

Does Perioperative Antithrombotic Therapy Increase the Likelihood of a Postoperative Coagulopathy After Cardiac Surgery?

To the Editor:—Antithrombotic agents such as low molecular weight heparins and platelet glycoprotein IIb/IIIa inhibitors are increasingly being administered to cardiac surgical patients during the perioperative period. In the September 1999 issue of Anesthesiology, Skubas and colleagues report a case of prolonged postoperative bleeding in a cardiac surgical patient treated preoperatively with the low molecular weight heparin, enoxaparin, and the platelet glycoprotein IIb/IIIa inhibitor, tirofiban. Although Factor Xa or platelet function assays were not performed, the authors suggest that the preoperative use of enoxaparin and tirofiban may have contributed to the postoperative coagulopathy in this patient. Whereas perioperative antithrombotic therapy may increase the risk of a postoperative coagulopathy after cardiac surgery, we believe that several comments regarding this particular case are in order.

Anesthesiology, V 92, No 5, May 2000

References


(Accepted for publication January 12, 2000.)

Anesthesiology
2000; 92:1499-1500
© 2000 American Society of Anesthesiologists, Inc.
Lippincott Williams & Wilkins, Inc.

In Reply—I would like to make three points in respect to the comment made by Professor Kenneth E. Shepherd in his letter.

No doubt that there is more to postoperative metastasis risk than immunosuppression. Among other factors, the physical manipulation of the tumor may release tumor cells into the circulation,1 and the sudden drop in levels of tumor-derived angiostatic agents may promote the development of existing micrometastases. These additional risk factors may indeed exacerbate the consequences of the suppression of natural killer cells evident in our study,2 especially given the role of natural killer cells in controlling both the seeding of circulating tumor cells and the development of existing micrometastases.

Nevertheless, our study2 was concerned with the effects of hypothermia, rather than tumor removal, on natural killer activity and resistance to metastasis. Angiogenesis inhibitors such as angiostatin are not expected to play a role in these respects, and certainly could not be implicated for the enhancement of metastasis seen in our study,2 especially given the role of natural killer cells in controlling both the seeding of circulating tumor cells and the development of existing micrometastases.

In accordance with the suggestion to couple the impact of angiostatic agents and immunosuppression in studying the pathobiology of perioperative metastasis, we have now begun to use surgical removal of spontaneously metastasizing tumors to better simulate the clinical setting, and study the interaction of immunosuppression with other factors that promote metastasis.

Shamgar Ben-Eliyahu, Ph.D.
Professor
Department of Psychology
Tel Aviv University
Tel Aviv 69978
Israel
shamgar@post.tau.ac.il

References


(Accepted for publication January 12, 2000.)

Anesthesiology
2000; 92:1499
© 2000 American Society of Anesthesiologists, Inc.
Lippincott Williams & Wilkins, Inc.

In Reply—I would like to make three points in respect to the comment made by Professor Kenneth E. Shepherd in his letter.

No doubt that there is more to postoperative metastasis risk than immunosuppression. Among other factors, the physical manipulation of the tumor may release tumor cells into the circulation,1 and the sudden drop in levels of tumor-derived angiostatic agents may promote the development of existing micrometastases. These additional risk factors may indeed exacerbate the consequences of the suppression of natural killer cells evident in our study,2 especially given the role of natural killer cells in controlling both the seeding of circulating tumor cells and the development of existing micrometastases.

Nevertheless, our study2 was concerned with the effects of hypothermia, rather than tumor removal, on natural killer activity and resistance to metastasis. Angiogenesis inhibitors such as angiostatin are not expected to play a role in these respects, and certainly could not be implicated for the enhancement of metastasis seen in our study,2 especially given the role of natural killer cells in controlling both the seeding of circulating tumor cells and the development of existing micrometastases.

In accordance with the suggestion to couple the impact of angiostatic agents and immunosuppression in studying the pathobiology of perioperative metastasis, we have now begun to use surgical removal of spontaneously metastasizing tumors to better simulate the clinical setting, and study the interaction of immunosuppression with other factors that promote metastasis.

Shamgar Ben-Eliyahu, Ph.D.
Professor
Department of Psychology
Tel Aviv University
Tel Aviv 69978
Israel
shamgar@post.tau.ac.il

References


(Accepted for publication January 12, 2000.)

Anesthesiology
2000; 92:1499
© 2000 American Society of Anesthesiologists, Inc.
Lippincott Williams & Wilkins, Inc.

In Reply—I would like to make three points in respect to the comment made by Professor Kenneth E. Shepherd in his letter.

No doubt that there is more to postoperative metastasis risk than immunosuppression. Among other factors, the physical manipulation of the tumor may release tumor cells into the circulation,1 and the sudden drop in levels of tumor-derived angiostatic agents may promote the development of existing micrometastases. These additional risk factors may indeed exacerbate the consequences of the suppression of natural killer cells evident in our study,2 especially given the role of natural killer cells in controlling both the seeding of circulating tumor cells and the development of existing micrometastases.

Nevertheless, our study2 was concerned with the effects of hypothermia, rather than tumor removal, on natural killer activity and resistance to metastasis. Angiogenesis inhibitors such as angiostatin are not expected to play a role in these respects, and certainly could not be implicated for the enhancement of metastasis seen in our study,2 especially given the role of natural killer cells in controlling both the seeding of circulating tumor cells and the development of existing micrometastases.

In accordance with the suggestion to couple the impact of angiostatic agents and immunosuppression in studying the pathobiology of perioperative metastasis, we have now begun to use surgical removal of spontaneously metastasizing tumors to better simulate the clinical setting, and study the interaction of immunosuppression with other factors that promote metastasis.

Shamgar Ben-Eliyahu, Ph.D.
Professor
Department of Psychology
Tel Aviv University
Tel Aviv 69978
Israel
shamgar@post.tau.ac.il

References


(Accepted for publication January 12, 2000.)