Early Preload Adaptation in Septic Shock?

A Transesophageal Echocardiographic Study

Antoine Vieillard-Baron, M.D.,* Jean-Marie Schmitt, M.D.,† Alain Beuchet, M.D.,‡ Roch Augarde, M.D.,† Sebastien Prin, M.D.,† Bernard Page, M.D.,§ François Jardin, M.D.‖

Background: An accepted concept in septic shock is that preload adaptation by acute left ventricular dilatation, when occurring spontaneously or with the aid of volume loading, permits maintenance of an adequate cardiac output, leading to final recovery. From a physiologic point of view, this concept appears debatable because a normal pericardium exerts a restraining action on a normal heart.

Methods: During a 26-month period, the authors investigated, by transesophageal echocardiography, 40 patients hospitalized in their unit for an episode of septic shock. Transesophageal echocardiography was performed in the first hours after admission, proceeded by correction of any hypovolemia, and stabilization of arterial pressure by vasoactive agent infusion if necessary. Left ventricular dimensions were obtained in long- and short-axis views, permitting calculation of left ventricular ejection fraction (long axis) and fractional area contraction (short axis). Stroke index was simultaneously measured by the Doppler technique.

Results: Stroke index was strongly correlated with both echocardiographic left ventricle ejection fraction (r = 0.75; P < 0.0001) and left ventricle fractional area contraction (r = 0.76; P < 0.0001), whereas it was independent of echocardiographic left ventricle diastolic dimensions.

Conclusions: The transesophageal echocardiography study was unable to confirm the reality of the concept of early preload adaptation by left ventricular dilatation in septic shock. Conversely, because left ventricular volume always remained in a normal range after correcting hypovolemia, systolic function was the unique determinant of stroke index in septic shock.

Early Preload Adaptation in Septic Shock?

The concept of left ventricular (LV) preload adaptation in septic shock was introduced by Parrillo.1 It was derived from a clinical study performed by his group that demonstrated that a severe reduction in LV ejection fraction initially observed in septic shock did not affect cardiac output in patients who recovered, because it was accompanied by an acute LV dilatation.2

The current study was performed to verify the reality of this concept, which may appear somewhat debatable, because the presence and the restraining action of the pericardium should theoretically limit LV preload reserve when an acute LV failure occurs in a previously normal heart. We used transesophageal echocardiography (TEE) to evaluate early preload adaptation in a group of patients supported for an episode of septic shock.

Patients and Methods

Patients

From September 1997 through October 1999, 40 adult patients were admitted to our medical intensive care unit for an episode of septic shock. Septic shock was defined as hypotension (arterial systolic pressure less than 90 mmHg by invasive monitoring) occurring in a septic context, despite adequate fluid resuscitation, along with the presence of perfusion abnormalities including oliguria, lactic acidosis (blood lactate level > 2.5 mmol/L), and acute alteration of mental status.3 All patients studied also required mechanical ventilation because of associated respiratory failure (arterial oxygen tension/fractional inspired oxygen tension < 300 mmHg), severely depressed mental acuity, or both. The causative bacterial agent was subsequently identified in all cases: positive blood cultures were obtained in 30 patients, and a bacterial species was isolated from a localized site of infection in 10 additional patients. This group had a general severity index (Simplified Acute Physiology Score version II) of 59 ± 19, calculated on the first day of hemodynamic support.4

These 40 patients (33 men and 7 women; mean age, 53 ± 18 yr), with no prior cardiopulmonary disease, were predominantly medical (35 vs. 5 surgical patients) and were assigned to a TEE and Doppler study within hours of admission, after hemodynamic stabilization. Despite initial fluid resuscitation by a plasma expander (10 ± 2 ml/kg of 6% hetastarch), hemodynamic support by a vasoactive agent was required in all cases to maintain invasive arterial systolic pressure between 90 and 110 mmHg. We also monitored in these patients the expiratory drop in arterial pulse during cyclic tidal ventilation. This drop was expressed as a percentage and was calculated as the maximal (inspiratory) value minus the minimal (expiratory) value divided by the average of the two values.

In our unit, where right heart catheterization is never used, TEE is routinely performed at regular intervals in mechanically ventilated patients to evaluate circulatory status. This protocol was thus considered as part of routine clinical practice, and no informed consent was required from the patients’ next of kin, as confirmed by the Clinical Research Ethics Committee of the French Intensive Care Society, Paris, France.
Adequacy of Fluid Resuscitation

To ensure that fluid resuscitation was adequate, cyclic changes in arterial pulse during a controlled respiratory cycle and the end-expiratory value of central venous pressure (CVP) were checked just before the TEE study. If a patient had an expiratory drop in arterial pulse of more than 15% or a CVP of less than 12 mmHg, an additional volume expansion was performed to reduce the drop in arterial pulse to 10% and to obtain a CVP of 12 mmHg or more. This additional expansion (7 ml/kg of 6% hetastarch in 30 min) was only necessary in four patients.

Vasoactive Support

At the time of the study, four patients were given dopamine (16.2 ± 4.3 μg · kg⁻¹ · min⁻¹) associated with dobutamine (8.5 ± 2.2 μg · kg⁻¹ · min⁻¹), 30 were given epinephrine (0.8 ± 0.3 μg · kg⁻¹ · min⁻¹), and the remaining six were given norepinephrine (1.1 ± 0.5 μg · kg⁻¹ · min⁻¹), combined in one case with epinephrine (1.2 μg · kg⁻¹ · min⁻¹).

Mechanical Ventilation

At the time of the study, mechanical ventilation was used in the controlled mode, with a tidal volume of 6–8 ml/kg (resulting in an average plateau pressure of 23 ± 3 cm H₂O), a respiratory rate of 12–16 breaths/min, an end-inspiratory pause of 0.5 s, an inspiratory-expiratory time ratio of 1:2, and an average positive end expiratory pressure of 6 ± 2 cm H₂O.

Transesophageal Echocardiographic Study

Two-dimensional real-time echocardiographic studies were performed with a wide-angle phased-array digital sector scanner and a transesophageal probe (Hewlett-Packard Sonos 500; Hewlett-Packard, Andover, MA; or Toshiba Corevision; Toshiba, Puteaux, France). We successively recorded a transesophageal, long-axis, four-chamber view, a transgastric, short-axis view of cardiac cavities, and a long-axis view of LV outflow tract to measure aortic diameter at the level of the aortic annulus. Doppler aortic flow, by pulsed or continuous wave, was measured as the distance from the apex to the midpoint of the mitral valve ring, and LV volumes (V) and ejection fraction (EF) were calculated using the single-plane, area-length formula from the long-axis, four-chamber view. Right ventricular end diastolic area (RVEDA) was also measured on the same long-axis view, and the RVEDA-to-left ventricular end diastolic area (LVEDA) ratio was calculated. In the short-axis view, LV fractional area contraction was calculated as (LVEDA – LVESA)/LVEDA. By tracing the envelope of aortic flow, the velocity-time integral was automatically processed. Stroke index (SI) was obtained by multiplying the velocity-time integral by aortic area, which was calculated from the systolic aortic diameter. Cardiac output was calculated as SI times heart rate. All measurements were averaged during the whole respiratory cycle and indexed to body surface area.

Statistical Analysis

Statistical calculations were performed using the Statgraphics plus package (Manugistics, Rockville, MD). Data are expressed as mean ± SD. Least square linear regression analysis was used to evidence significant determinants of SI. An analysis of variance followed by the Bonferroni multiple comparison procedure was used to compare data between subgroups. A P value < 0.05 was required to reject the null hypothesis.

Results

At the time of TEE study, 4 to 6 h after admission, hemodynamic stabilization was obtained in all patients. Mean heart rate for the whole group was 102 ± 23 beats/min, mean systolic arterial pressure averaged 7 mmHg, and arterial pulse was 49 ± 3 and 52 ± 3 mmHg at end expiration and end inspiration, respectively. End-expiratory CVP was 13 ± 1 mmHg.

Table 1. Normal Values for Echocardiographic Measurements Obtained by Transthoracic Echocardiography in a Group of 50 Young, Healthy Adults

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Average Value (mean ± SD)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDV (cm²/m²)</td>
<td>71 ± 15</td>
<td>40–91</td>
</tr>
<tr>
<td>LVESV (cm²/m²)</td>
<td>22 ± 8</td>
<td>9–38</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>69 ± 7</td>
<td>55–83</td>
</tr>
<tr>
<td>LVEDA (cm²/m²)</td>
<td>13 ± 2</td>
<td>10–18</td>
</tr>
<tr>
<td>LVESA (cm²/m²)</td>
<td>5 ± 1</td>
<td>4–9</td>
</tr>
<tr>
<td>LVFAC (%)</td>
<td>60 ± 5</td>
<td>50–69</td>
</tr>
</tbody>
</table>

Mean BSA: 1.8 m². LVEDV = left ventricular end-diastolic volume; LVESV = left ventricular end-systolic volume; LVEF = left ventricular ejection fraction; all three values obtained by a long axis (apical four-chamber view); LVEDA = left ventricular end-diastolic area; LVESA = left ventricular end-systolic area; LVFAC = left ventricular fractional area contraction, all three values obtained by a short axis (parasternal approach at the level of papillary muscle).
For comparison with values observed in septic patients, normal values for echocardiographic measurements by a transthoracic echocardiography (TTE) approach used in our laboratory are given in table 1.

Evaluations of LV diastolic dimensions and systolic function by long- and short-axis views in septic patients are presented in figure 1. Average left ventricular end diastolic volume (LVEDV) in this group was 61 ± 17 cm3/m2 (range, 31–96 cm3/m2), and average LVEDA in the short axis was 12 ± 4 cm2/m2 (range, 6–25 cm2/m2). Average left ventricular ejection fraction (LVEF) in this group was 49 ± 15% (range, 17–75%), and average LV fractional area contraction in the short axis was 51 ± 15% (range, 19–76%). An illustrative example of echocardiographic evaluation is shown in figure 2.

Early cardiac output Doppler evaluation in this group gave an average value of 3.2 ± 1.1 l·min$^{-1}$·m$^{-2}$ (range, 1.3–6 l·min$^{-1}$·m$^{-2}$). A hypokinetic state (cardiac index < 2 l·min$^{-1}$·m$^{-2}$) was present in seven patients, cardiac index was in the normal range (between 2 and 4 l·min$^{-1}$·m$^{-2}$) in 27 patients, and a hyperkinetic state (cardiac index > 4 l·min$^{-1}$·m$^{-2}$) was seen in six patients. Heart rate (126 ± 25 beats/min) and LVEF (67 ± 7%) in this latter subgroup were significantly higher than in the other subgroups (heart rate, 90 ± 13 and 101 ± 21; and LVEF, 34 ± 10% and 49 ± 13%; in the hypokinetic and normal

Fig. 1. Evaluation of left ventricular function in the long- and short-axis views by transeosophageal echocardiography. In the left panel, individual values of end-diastolic area (EDA) by the short axis are plotted against simultaneous values of end-diastolic volume (EDV) by the long axis. In the right panel, individual values of fractional area contraction (FAC) by the short axis are plotted against simultaneous values of ejection fraction (EF) by the long axis.

Fig. 2. An example of transeosophageal echocardiography left ventricular measurements by long-axis (top) and short-axis (bottom) views. ED = end diastole; ES = end systole.
output states, respectively). The mortality rate among patients in a hyperkinetic state at presentation (100%) was significantly higher than in the other subgroups (43% and 24% in hypokinetic and normal output states, respectively). Illustrative examples of Doppler stroke index measurement are given in figure 3.

Determinants of SI (LV systolic function and LV diastolic dimensions) are depicted in figure 4. Whereas SI appeared strongly correlated with both LVEF obtained by the long axis and LV fractional area contraction obtained by the short axis (in the upper panel of fig. 4), no significant correlation was observed either with LVEDV in the long axis or with LVEDA in the short axis (lower panel of fig. 4).

Minor RV dilatation was present in 13 patients (RVEDA-to-LVEDA ratio, 0.81 ± 0.11), whereas RV size was normal in 27 patients (RVEDA-to-LVEDA ratio, 0.48 ± 0.10). Evaluation of pulmonary artery systolic pressure by the Doppler method was feasible in all patients.

Fig. 4. In the upper panel, individual values of Doppler stroke index (SI) are plotted against simultaneous measurements of left ventricular ejection fraction in the long axis (LVEF; top left) or left ventricular area contraction in the short axis (LVFAC; top right). In the lower panel, the same values of Doppler SI are plotted against simultaneous measurements of left ventricular end-diastolic volume in the long axis (LVEDV; bottom left) or left ventricular end-diastolic area in the short axis (LVEDA; bottom right).
Discussion

Our study demonstrated that, during septic shock, SI was essentially determined by the quality of LV systolic function. Conversely, SI was little influenced by the LV diastolic dimension, when any hypovolemia was corrected. Thus, the early preload adaptation described by Parrillo’s group was never detected by TEE in our patients who were in septic shock. This finding did not surprise us, because the restraining action of the pericardium theoretically precludes any acute LV dilatation. LV diastolic dimensions observed in the current study were thus in the normal range despite septic shock.

A major question concerning this study is to be sure that hypovolemia was corrected in our patients. Adequate fluid resuscitation in critically ill patients, neither too much nor too little, remains a difficult challenge. Pulmonary artery occlusion pressure monitoring has repeatedly been evidenced as inaccurate in assessing LV preload.5,8 Central venous pressure monitoring has recently been rehabilitated.9 With a central venous pressure between 6 and 12 mmHg, the RV is thought to act on the flat part of its function curve,9 and we systematically adjust fluid resuscitation in mechanically ventilated patients to obtain a CVP of 12 mmHg or more. When available, other studies have reported lower values for patients who were in septic shock. This finding did not surprise us, because the restraining action of the pericardium theoretically precludes any acute LV dilatation. LV diastolic dimensions observed in the current study were thus in the normal range despite septic shock.

In our experience, underestimates LV volumes in comparison with contrast ventriculography.5 Normal values in a large population were reported as 70 ± 26 cm3/m2 by Triulzi et al.,5 and the normal value of our laboratory is 71 ± 15 cm3/m2 (see table 1). We have in the past used TEE to measure LVEDV in septic patients and found an average value of 73 ± 20 cm3/m2 in a first study of 21 patients,20 66 ± 18 cm3/m2 in a second study of 32 patients,6 and 69 ± 24 cm3/m2 in a third study of 90 patients.21 In the current study, we used TEE, which, in our experience, underestimates LVEDV evaluation in the long axis by approximately 12% when compared with TTE, whereas short-axis evaluation by TEE gives results identical to those of TTE. Thus, an LVEDV of 61 ± 17 cm3/m2 in the current study was perfectly consistent with our previous studies. In the current study, we also evaluated LV diastolic dimensions in the short axis at the level of papillary muscle and found an average LVEDA of 12 ± 4 cm2/m2. Normal values in a large population were reported as 12 ± 2 cm2/m2 by Weyman22 using TTE by a parasternal approach at the same level of papillary muscle (after indexing the Weyman value for a mean body surface area of 1.8 m2). The normal value of our laboratory by the same approach is 13 ± 2 cm2/m2 (see table 1). Recently, Polaert et al.23 and Tavernier et al.24 also reported that, in septic patients, LV diastolic dimensions determined by TEE in the short axis were not increased. The reason for the major discrepancy between combining thermodilution and radionuclide
angiography on the one hand, and echocardiography on
the other hand, seems to lie in methodologic problems.

A first theoretical problem is that calculation of LVEDV
by an indirect method, combining cardiac output mea-
surements by thermodilution and LVEF by radionuclide
angiography, leads to a result that adds the inaccuracies
of the two methods. However, probably more important
are the limitations of the thermodilution method in mea-
suring cardiac output in critically ill patients. In such
patients, there are several reasons for abnormal thermal
loss, which potentially affects the accuracy of the ther-
modilution method and causes cardiac output overesti-

mation. In mechanically ventilated patients, we have
previously shown that cyclic increase in thoracic pres-

dure produced cyclic backward flow of the thermal in-
dicator from the right atria toward the inferior vena
cava.25 Additionally, in low-flow states, thermal loss
leads to overestimation of cardiac output.26,27 Thus, the
marked LV enlargement reported by Parker et al.2 may
well be explained by an overestimated cardiac output
and SI. As we have observed in our previous stud-
ies8,20,21 and confirmed by the current study, a low LVEF
in septic shock was associated with a low cardiac out-
put. Thus, in patients with a low EF, overestimation of
cardiac output by thermodilution is highly likely to be
the result of the presence of a low-flow state. The end
result is an overestimated cardiac size when evaluated
by combining radionuclide EF.

We also assessed RV size by TEE in the current study.
Measured by the gold standard biplane contrast ventricu-
lography, the normal RV has an end-diastolic volume
identical to that of the LV.28–30 But, unlike the LV, the RV
may well dilate acutely. This original property results
from a sudden flattening or even reversal of interventric-
ular septum curvature, producing an enlargement in the
RV cavity through a change in shape of this cavity.31 In
a clinical setting, where this acute RV dilatation was
observed by TTE, it was always accompanied by an acute
reduction in LV diastolic dimensions, resulting in a con-
stant cardiac size.32 Combination of thermodilution car-
diac output measurement and radionuclide angiographic
determination of ejection fraction has been used to de-
termine RV dimensions in septic shock. Using this tech-
nique, Parker et al.10 described a major RV dilatation in
septic patients that was associated with LV enlargement,
suggesting an acute reduction in pericardial elastance
by the septic process. This acute RV dilatation in septic
shock was confirmed by Schneider et al.11 and by Kim-
chi et al.33 using the same technique. But, as we have
previously mentioned, this technique may be influenced
by a serious artifact produced by the thermal loss that
occurs in low-flow states.26,27 Another attempt to mea-
sure RV dimension in septic patients was performed by
Vincent et al.12 using a fast-response thermodilution
catheter, permitting simultaneous measurement of car-
diac output and RV EF. With this technique, these au-
thors found some RV enlargement in septic shock. In
another study, Dhainaut et al.13 using the same ther-
modilution technique, found an average value for
RVEDV in the normal baseline range in a group of 18
patients with severe sepsis. Additionally, RVEDV was
increased by 14% on average after a loading challenge
produced by medical antishock trousers.13 In the cur-
current study, we assessed RV dimensions by calculation
of the RVEDA-to-LVEDA ratio in the long axis. We have
previously defined normal RV echocardiographic size in
the long axis as an RVEDA-to-LVEDA ratio of 0.6 or less,
moderate RV dilatation as an RVEDA-to-LVEDA ratio be-
tween 0.6 and 1, and severe RV dilatation as an RVEDA-
to-LVEDA ratio or more than 1.34 Using these definitions,
we found in the current study a normal RV size in most
patients. However, moderate RV dilatation was present
in approximately 50%, with an elevated pulmonary ar-
tery systolic pressure, when it could be measured
noninvasively.

The other results of the current study are in accord
with accepted notions and do not require specific com-
ments. The data confirm that a hyperdynamic state is not
the general rule in septic shock.21 However, when
present, it resulted from marked tachycardia and from an
elevated LVEF suggesting a severe fall in systemic arterial
resistance. A hyperdynamic state was associated with a
100% mortality rate in the current study, and this sever-
ity has previously been underscored.35

In conclusion, in contrast to a well-accepted notion,
we did not observe any preload adaptation in this group
of patients with septic shock, and we demonstrated that
the quality of LV systolic function was the major deter-
minant of cardiac output in this setting. We also ob-
erved that the RV, whose mechanical properties are
somewhat different from those of the LV, was moder-
ately dilated in 30% of patients studied.

References

258:1471–7

2. Parker M, Shelhammer J, Bacharach S, Gren M, Nutanson C, Frederick T,
Damske B, Parrillo J: Profound but reversible myocardial depression in patients

Definition for sepsis and organ failure and guideline for the use of innovative

4. Le Gall JR, Lemeshow S, Saulnier F: A new simplified acute physiology score
(SAPS II) based on a European/North American multicenter study. JAMA 1993;
270:2957–63

hemodynamic indices derived by invasive monitoring and two-dimensional echo-
cardiography. ANESTHESIOLOGY 1987; 67:630–4

6. Triulzi M, Wilkins G, Giliam L, Gentile L, Weyman A: Normal adult cross-
sectional echocardiographic values: left ventricular volumes. Echocardiography
1985; 2:153–69

7. Darmon PL, Hillel Z, Morgat A, Mindich B, Thys D: Cardiac output by
transesophageal echocardiography using continuous-wave Doppler across the
aortic valve. ANESTHESIOLOGY 1994; 80:796–805

toring combined with two-dimensional echocardiographic study in septic shock.
Intensive Care Med 1994; 20:550–4

Anesthesiology, V 94, No 5, Mar 2001

