Obligate Acceleromyography and Pharmacologic Reversal of All Neuromuscular Blocking Agents: Really, and Where Is the Clinical Outcome?

To the Editor—The recent article and editorial regarding acceleromyographic findings of residual paralysis hours after neuromuscular blockade (NMB) raised several questions and proposed sweeping conclusions based on results found in extubated patients on arrival in the PACU, transferred by competent anesthesiologists. The type of anesthesia and the time from discontinuation is unknown. No patient was examined prior to use of NMB for preexistent abnormalities, and it does not appear that any of the study patients required or were given reversal agents, despite the “findings” of residual NMB. I suspect that all recovered successfully and without complaint, making the relevance of “acceleromyographic quantification of residual effects” clinically irrelevant. The editorial invokes “evidence-based practice,” but the “evidence” lies outside the realm of practice. Evidence should have clinical consequence. The newest mantra of medicine was ignored: outcome-based. Also, because the study was not randomized and double-blind, it may be too soon to make these sweeping recommendations.

Universal reversal is offered as if no adverse effects are associated with such drugs: Hypersalivation, nausea, asystole, bradycardia and tachycardia, laryngospasm, negative pressure pulmonary edema and failure to reverse or recognize such, prolonged apnea after succinylcholine for reintubation, and so forth are potential reversal side effects. These acceleromyographic findings are extremely difficult/impossible to quantify, using the clinically commonplace mechanomyogram tactile and visual methods. Increased utilization of complex monitoring devices is also proposed, as if no shortcomings are introduced—don’t forget the costs and time involved in applying/acquiring devices and to verify/failing to verify complete reversal! No scientific test will ever replace the clinical ability to comprehensively evaluate the patient’s ability to breathe and maintain an airway or clinical experience to appreciate pharmacodynamics in medicine. Recovery is a composite of dissipation of the clinical effects of all anesthetic agents, as well as the imposition of the surgical events: Indeed, frequently patients remain intubated because of surgical trespass, narcotics, sedatives, or preoperative/perioperative infirmity.

How many study patients with residual NMB needed reversal, were reversed, or failed recovery without reversal, and based on what criteria? Did the residual effects disappear after reversal agents, and when? How did age, core temperature, body mass index, NMB agent used, and patient satisfaction correlate to the findings of individual’s residual NMB hours after a single dose? Did the abdominal wound inhibit head lift in your patients, as it does in mine, and how did you control for this? How is this study clinically relevant: what were the outcomes? A great deal of neuromuscular and pharmacokinetic reserve is evident in many healthy, muscular patients yet not evident in debilitated geriatric patients, who will need complete reversal. Do we need pharmacologic reversal in every patient and can these tests actually measure clinical reversal in ALL patients? Are we recommending obligate reversal to eliminate acceleromyographic findings or clinical respiratory compromise, and what side effects will obligate reversal and acceleromyograph monitoring incur? Sometimes the enemy of “good” is “better.”

Paul M. Kempen, M.D., Ph.D. University of Pittsburgh School of Medicine, Presbyterian University Hospital, Pittsburgh, Pennsylvania. pkempe@pol.net

References


(Pls. cmtb: 34.4332.4501.63)

Evidence-based Practice and Neuromuscular Monitoring

To the Editor—Evidence-based practice is a laudable goal, but before acting on it we must have all the evidence. Two hours after an intubating dose of an intermediate acting muscle relaxant, Debaene et al. showed residual paralysis not recognized by subjective tactile or visual train-of-four monitoring. On the basis of this evidence, quantitative evaluation is recommended by the authors and is endorsed by the accompanying editorial. Using awake volunteers, Eikermann confirmed the presence of respiratory dysfunction detected by accelerometry that is not detected by more subjective analysis. However, what is not answered is, What is the morbidity and mortality caused by this subjective analysis? What is the morbidity and mortality of fixing the perceived problem? I have not seen a clinical problem with a patient intubated after rocuronium, a subjective train-of-four ratio of one at 1 hour later, and extubation without reversal. In fact, Eikermann reported, “Despite impaired upper airway function, no jaw thrust was needed, none of the volunteers reported dyspnea, and oxygen saturation remained greater than 96% at all times.” Clinically, quantitative analysis may yield false-positive test results that change our procedures so as to increase morbidity and mortality. Reversal of clinically insignificant paralysis may increase nausea and vomiting as well as increase airway secretions that may decrease pulmonary function. In an attempt to avoid problems with muscle relaxants, intubating without relaxants may cause laryngeal morbidity. Resources and attention may be diverted from more significant factors. Outcome studies comparing the standard train-of-four with a more precise measurement of paralysis would provide evidence as to which is the best technique. Until we have such evidence it is premature to recommend a change in practice.

M. Craig Pinsker, M.D., Ph.D. Commonwealth Anesthesia, Richmond, Virginia. mcpins@pol.net

References

To the Editor—We read with interest the editorial view of Lars Eriksson, M.D., on evidence-based practice and neuromuscular monitoring. As Dr. Eriksson correctly presents, current subjective neuromuscular blockade monitoring is clearly inaccurate, often resulting in patients with some residual blockade in the PACU. However, to conclude that “the message is short and clear—it is time to move from discussion to action and introduce objective neuromuscular monitoring in all operating rooms” is unfortunate. There are currently no published outcome studies with respect to intermediate-acting muscle relaxants and residual weakness postoperatively. The “consequences” to which Dr. Eriksson refers in his editorial have not been related to any mortality/morbidity differences. His belief that this would improve patient outcome is unsupported.

To advocate a new monitoring standard that would probably cost millions of dollars without outcome data to support such an expenditure is inappropriate. Just because other equipment has been introduced into medicine without outcome research does not justify the continuation of such behavior. That is not evidence-based medicine. Dr. Eriksson’s conclusion, although quite dramatic, is not presently justified.

Roland R. Rizzi, M.D. Department of Anesthesiology, Lenox Hill Hospital, New York, New York. mdski@msn.com

References

(Received for publication September 26, 2003.)

Neuromuscular Monitoring Advancement

References

(Received for publication September 26, 2003.)
In Reply—The interesting comments of Drs. Kempen, Pinsker, and Rizzi regarding my previous editorial in the Journal1 are, to some extent, similar and offer me the opportunity to comment on this issue from another perspective.

Dr. Kempen focuses on whether we have evidence strong enough to support a change in practice. Like Dr. Pinsker, he also thinks that clinical bedside evaluation is superior to the information given by a neuromuscular monitor. He also states that the acceleromyograph is extremely difficult/impossible to quantitate and that more complicated devices may lead to serious problems of costs, time, consumption, and accuracy! In this matter, Dr. Kempen partly refers to a study when accelerography was not yet in routine clinical use. He also states that recovery includes recovery from all anesthetic agents, not only the neuromuscular blocking drugs. Currently, most commercially available neuromuscular monitoring principles are easy to use and have a simple and rapid setup procedure. Of course, objective neuromuscular monitoring, as mentioned in the editorial,2 only detects muscular function rather than recovery from anesthesia within other organ systems (e.g., central nervous system, spinal cord). As such, neuromuscular monitoring provides important pieces of information that cannot be derived from other monitoring principles, such as capnography, spirometry, or end-tidal gas analysis. More important, it is not justified to accept a nonmonitoring attitude merely because one thinks the evidence is insufficient and without having studied the recent literature.

Dr. Pinsker touches on issues related to morbidity and mortality caused by residual block. In this context, he also states that he has not seen a clinical problem with a patient cared for in his practice, which he declares routinely lacks neuromuscular monitoring and reversal agents. He further thinks that more outcome studies are needed before a change in practice can be recommended. As a clinical anesthesiologist who routinely reads our anesthesia journals, I am surprised at this statement. Even without knowing the quality of the data and the protocols that Dr. Pinsker uses, I strongly suggest that he publish his clinical observations about the lack of any problems in his practice, because such findings are in deep contrast to several reports in the anesthesia literature.2–6 Moreover, the existence of a few outcome studies,6,9 of the kind Dr. Pinsker wants to see must have escaped his attention. As written in the editorial, investigations of that kind6,9 and many more clearly demonstrate that such practices result in residual paralysis in many patients, that residual block is a risk factor for the development of postoperative pulmonary complications, and, finally, that such block can be avoided by objective neuromuscular monitoring. To my opinion, this sends a clear message to all of us who frequently read anesthesia journals.

Finally, Dr. Rizzi would like to see better outcome studies. Each publication can (and should) be evaluated in this context, which improves the discussion. The editorial1 tried to do this by putting neuromuscular monitoring in perspective with intraoperative and postoperative studies, thus providing key information, even if further studies are yet to be done. In this light, there is far more scientific evidence that residual neuromuscular block affects outcome in a way that may be hazardous for some patients, with increased risk for pulmonary adverse events occurring late in the postoperative period, when most anesthesiologists are back in the operating room. Solid information2–9 currently supports the view that failure to introduce objective neuromuscular monitoring into routine anesthetic practice represents substandard care.

Once again, explore the references and join the club! It is time for action and to provide neuromuscular monitoring in our operating theaters.

Lars I. Eriksson, M.D., Ph.D. Karolinska Hospital and Institute, Stockholm, Sweden.lars.ieriksson@ks.se

References

3. Cooper AL, Leigh JM, Tring IC: Admissions to the intensive care unit after complications of anesthetic techniques over 10 years. Anaesthesia 1989; 44: 955–8

(Accepted for publication September 26, 2003.)
hypothesis to the point of caspase-8 activation. In the context of ischemia, apoptosis and necrosis must be a continuum, the fate depending on the extent of spared ATP stores; necrosis is found in the center of brain infarcts, and apoptosis in the surviving penumbra zone. Alkalosis within pH ranges of 7.0 to 8.0 depresses linearly creatine-kinase mediated phosphorylation (~ P) reactions; the extremes of pH below 7 or above 8 at which linearity is not known. During deep α-stat hypothermia, the actual pH often exceeds far above 8.0; if sustained long enough the decremental synthesis will lead to ~ P depletion even without arrest, manifested as significant elevation of caspase-8 in the CPB-only group. We postulate that ~ is further consumed during the arrest to levels below the threshold limits for activation of caspase-8 and leading to the apoptosis cascade. If arrest time is limited, sufficient ~ will still remains for the recovery of ATP synthesis mechanisms on re-warming and oxygenation, leading to the recovery of post-re-warming [ATP] levels similar to controls, thus preventing acute cellular death by necrosis. However, because the apoptosis cascade has been already activated, those cells are destined to die 8 to 72 h post-DHCA without involving ATP at that time.

Following is a brief account of some of the widely documented deleterious effects during α-stat cooling that, despite being significant, were dismissed (as with the caspase-8 in the CPB group in the author’s study) because of the overwhelming findings of circulatory arrest:

1. During cooling induction: (a) brain hypoxia, worse with α-stat hypothermia than with pH-stat hypothermia; (b) brain lactate production; and (c) brain glutamate and nitric oxide release.

2. During or after re-warming: (d) brain production of hypoxanthine and xanthine.

3. Functional outcome: (e) the time required for electroencephalographic recovery on re-warming with time to electrocerebral silence, and even minimal hypocarbia increased time to electrocerebral silence; (f) worse neurologic performance and worse brain histopathologic injury with longer pre-arrest CPB α-stat cooling duration.

Cerebral oxygen needs below 18°C could theoretically be met by the dissolved oxygen on which α-stat strategies rely, but dissolved oxygen cannot satisfy requirements at temperatures higher than 18°C, at which the role of oxyhemoglobin (whose dissociation is carbon dioxide-dependent or pH-dependent) is greater. Significant brain lactate production starts during cooling well before arrest, coinciding with brain hypoxia and excitotoxicity. Regardless of the temperature, the Ca2+-extrusion pump is impaired by alkalosis. Alkalosis increases N-methyl-D-aspartate receptors sensitizing to glutamate, thus facilitating the intracellular Na+ and Ca2+ influx that cause cytotoxic edema, especially on reperfusion, which is minimized by acids. Mild acidosis reduces glutamate neurotoxicity by decreasing the activation of N-methyl-D-aspartate receptors and, consequently, reducing Na+ and Ca2+ influx, thus minimizing oxygen-glucose deprivation excitotoxic and reperfusion neuronal injury.

The issue is preserving the metabolic machinery integrity and ~ P levels during cooling induction. For millions of years, nature has exploited the protective hyperpolarizing effects of hypothermia due to increased Na+ efflux and increased Cl– conductance of eucapnic ventilation-induced acids, which is equivalent to pH-stat perfusion management. Such a strategy maintains aerobic metabolism and integrity of energy requiring membrane pumps, regardless of age, while fully taking advantage of metabolic depression and decreased release of excitatory aminoacids induced by hypothermia.

Our contention that brain hypoxia (Bohr effect) develops with α-stat cooling severely enough to cause injury well before arrest induction has been corroborated by the authors’ elegant study. pH-stat management was demonstrated to be superior both functionally and histopathologically by the same group, and it is regrettable that pH-stat-managed (CPB and DHCA) piglets were not included in this study, for we believe that caspase-8 in a CPB group and apoptosis in a DHCA group would have been prevented or greatly minimized. Supplementary intravenous taurine further potentiated, equivalent to 1.2°C, the protection afforded by pH-stat hypothermia.

Tadaomi A. Miyamoto, M.D.* Koho J. Miyamoto, M.D., Ph.D.† Kyoto University, Graduate School of Medicine, Kyoto, Japan. tkmiyamo@f3.dion.ne.jp

References


(Accepted for publication September 26, 2003.)
In Reply.—We thank Dr. Tadaomi A. Miyamoto and Dr. Koho J. Miyamoto for their interest in our work. We share their perception that the use of pH-stat management during cardiopulmonary bypass (CPB) for cardiovascular surgery in neonates confers neurologic protection compared with the use of α-stat management during CPB.1-3 However, we do not agree with their theory that α-stat management during CPB cooling “primes the system” for neuronal apoptosis after deep hypothermic circulatory arrest. This theory is based on their selective interpretation of caspase-8 data in our study and altered brain bioenergetics data in other studies.4,5

First, we cannot conclude that caspase-8 was elevated following α-stat CPB cooling. Although caspase-8 was elevated in Western blot analysis, as the authors point out, we did not find increased caspase-8 by immunohistochemistry or enzyme assays in the same brain specimens. Thus, the evidence for caspase-8 elevation was not conclusive. Moreover, we observed no functional impairment, histopathologic damage, or caspase-3 activation following deep hypothermic CPB using α-stat management.

Second, the experimental evidence for brain energetic failure during α-stat CPB cooling is conflicting. During α-stat CPB cooling, adenosine triphosphate is preserved and cerebral hemoglobin oxygenation increases.6 Whereas early work suggested cytochrome aa3 reduction during α-stat CPB cooling (supporting the idea of energetic failure), recent work refutes the validity of these cytochrome aa3 measurements.7,8

In summary, our interpretation of the literature is that pH-stat management for CPB provides neurologic protection for neonates through multiple mechanisms, but α-stat management does not, in and of itself, induce neurologic injury.

To the Editor.—Eikermann et al. are to be commended for rekindling interest in the importance of upper airway obstruction with residual paralysis.1 Previous observations in partially paralyzed volunteers indicated that although expiratory muscle strength was more impaired than inspiratory strength, expiratory flows were relatively more well maintained than inspiratory flows.2 These decreased inspiratory flows could not be simply attributed to decreased effort or driving pressure. Rather, flows are reduced out of proportion to the diminished inspiratory muscle strength. The inspiratory flow patterns suggested a variable extrathoracic obstruction that was most likely the result of weakened airway abductor muscle activity during inspiration. Consequently, many patients who may demonstrate inspiratory muscle strength (maximal inspiratory pressure) ample for ventilation may still have diminished strength in muscles necessary for upper airway protection.

Also implicit in the Eikermann study1 is the relatively poor sensitivity of forced vital capacity and its inspiratory subdivision as indicators of neuromuscular block, or more specifically, respiratory muscle weakness. The relationship between vital capacity and respiratory muscle strength in supine partially curarized subjects is curvilinear.3 That is to say, relatively large decrements in respiratory pressure generation must occur before volume reductions result. Thus, the relative preservation of vital capacity does not indicate a similar preservation of respiratory muscle strength as is often assumed. Such assumptions appear to be valid in the rather clinically irrelevant upright seated position.4 In supine subjects, whose mechanics are likely to be similar to Eikermann et al.’s semirecumbent subjects,1 the greater efficiency of the diaphragm and the diminished contribution of rib cage expansion provide better preservation of lung volume.

Thomas J. Gal, M.D.
University of Virginia Health System, Charlottesville, Virginia. tjgbmw@earthlink.net

References

(accepted for publication September 26, 2003.)
In Reply.—We appreciate Dr. Gal’s interest in our work. In our study, inspiratory flow was more affected by residual paralysis than expiratory flow. We agree that it is unlikely that persistent inspiratory flow impairment was evoked by residual blockade of inspiratory respiratory muscles, which are believed to be least affected by curarization. Rather, pharyngeal muscle dysfunction shown to persist after recovery of thumb muscles from partial neuromuscular blockade is likely responsible. However, to our knowledge the dose-response relationship or recovery profile of neuromuscular blocking agents at pharyngeal muscles has not yet been studied. In fact, it is unclear whether relaxation of a particular airway abductor muscle is responsible for persistent extrathoracic airway obstruction. Furthermore, there are no data on the time course of the suggested upper airway obstruction over the respiratory cycle. Therefore, Dr. Gal’s hypothesis, that persistent inspiratory flow limitation during partial paralysis is due to variable extrathoracic obstruction as the result of weakened airway muscle activity during inspiration, is yet to be confirmed.

We cannot (and did not intend to) pinpoint to which degree the effects of relaxation on pulmonary function are evoked by diminution of respiratory strength and/or upper airway obstruction. Irrespective of responsible mechanisms, our data show that respiratory function can still be seriously impaired despite recommended neuromuscular function test results suggesting adequate neuromuscular recovery.

We agree with Dr. Gal that sensitivity to detect residual paralysis by forced vital capacity measurements is low. Our data suggest that measurements of forced inspiratory flow and assessment of the ability of normal swallow may be more sensitive. In turn, however, our data also indicate that a marked forced vital capacity decrease may occur even with minimal neuromuscular blockade, suggesting impaired muscle strength. As respiratory muscle weakness can result in an ineffective cough with inability to clear secretions from the airways, we consider forced vital capacity recovery relevant for preventing pulmonary complications.

Matthias Eikermann, M.D., Harald Groeben, M.D., Jürgen Peters, M.D. Universitätsklinikum Essen, Essen, Germany. matthias.eikermann@uni-essen.de

References

(Accepted for publication September 26, 2003.)

Genetic Markers: Not Yet Ready for Prime Time

John Butterworth, M.D. Wake Forest University School of Medicine, Winston-Salem, North Carolina. jbutter@wfubmc.edu

References

(Accepted for publication October 29, 2003.)

In Reply.—Dr. Butterworth questions whether the use of genetic information from clinical studies to examine the impact of genetic variability on disease characterization and outcome, or functional genomics, is ready for “prime time.” However, before replying to that question, a brief review of the history of genetics may be in order. On April 14, 2003, the Human Genome Project announced the complete sequencing of the human genome, just 11 days shy of the fiftieth anniversary of Watson’s and Crick’s seminal description of the DNA double helix. During this brief timespan, we have witnessed the use of genomics for the rapid identification of newly discovered pathogens, such as that involved in the severe acute respiratory syndrome (SARS); the use

David C. Wartfier, M.D., Ph.D., served as acting Editor-in-Chief for this exchange.
of gene-expression profiling to assess cancer prognosis and guide therapy; the use of genotyping to stratify patients according to the risk of a disease, such as prolonged QT interval syndrome or myocardial infarction; the use of genotyping to increase our understanding of drug pharmacokinetics and pharmacodynamics; and the use of genetics for tissue engineering and the cloning of several different species.4,5 Recently, the National Human Genome Research Institute announced the formation of the International HapMap project, which will attempt to improve the ease and accuracy of human genetic risk profiling by creating a haplotype map consisting of approximately 500,000 tag single nucleotide polymorphisms from the more than 10 million that exist within the human genome. Even in diseases such as Huntington chorea, in which identification of the specific causative mutation has yet to lead to improved treatment, patients and their families have benefited from genetic counseling.6 All of these mind-boggling accomplishments have occurred within a single generation.

Is perioperative functional genomics ready for prime time? Maybe not quite yet. But one thing is assured: If genetic advances continue to occur at the current rate and the discipline of anesthesiology remains on the sidelines, we may very well find ourselves in the scientific “reruns” instead of at the forefront of novel, cutting-edge research.

Stephan Ziegler, M.D., Byron E. Tsusuki, D.O., Charles D. Collard, M.D. 1 University of Texas Health Science Center at Houston and Baylor College of Medicine, and Texas Heart Institute, St. Luke’s Episcopal Hospital, Houston, Texas. ccollard@heart.thi.tmc.edu

References

(Accepted for publication October 29, 2003.)

Table 1. Normal Values for the Base Excess (BE) from Venous Blood (n = 50)

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.352</td>
<td>0.023</td>
</tr>
<tr>
<td>Pco2</td>
<td>51.2</td>
<td>4.9</td>
</tr>
<tr>
<td>Po2</td>
<td>28.6</td>
<td>10.2</td>
</tr>
<tr>
<td>So2%</td>
<td>49.2</td>
<td>22.0</td>
</tr>
<tr>
<td>BE, mmol/l</td>
<td>-0.10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*BE is calculated from measured venous pH, Pco2, So2, and total Hb. Pco2 = partial pressure of carbon dioxide; Po2 = partial pressure of oxygen; So2 = oxygen saturation.

Medical Association (Bundesärztekammer 2002, Köln, Germany) for the electrolyte concentrations in the plasma are Na 142 ± 2.8 mmol/l (2.0%); K 4.5 ± 0.2 mmol/l (3.7%); Cl 103 ± 4.1 mmol/l (4%); and lactate 1.5 ± 0.1 mmol/l (6%). Using these figures, the normal value of the strong ion difference (Na + K - Cl - lactate) is calculated as 42 ± 5.0 mmol/l, with high inaccuracy from propagation of errors. Hence, reliability is strongly reduced, dominated by the largest errors (Na: ± 2.8 mmol/l, Cl: ± 4.1 mmol/l).

In comparison, normal BE is 0 ± 2.2 mmol/l when calculated from normal values of pH 7.40 ± 0.02, Pco2 40 ± 1.6 mmHg (4%), hemoglobin 15 ± 0.5 g/dl (2%), and full oxygen saturation ~100%. Reliability of BE is mainly affected by the inaccuracy of measurement for pH and Pco2, whereas that for hemoglobin is negligible.

BE as a prognostic factor: The diagnostic use and prognostic value of BE is well documented. Among 10 clinical hemodynamic and 20 blood laboratory parameters tested, change in BE proved to be the best predictor of blood volume changes in a canine hemorrhagic shock model.1 In critically ill patients BE has been established as an independent predictor of mortality3 and endpoint of resuscitation. On the basis of 8,200 polytrauma patients, statistically selected out of 15,200 from four clinical studies, mortality increased significantly with a decrease in BE, e.g., approximately by 25% if the assessed BE was -6 mmol/l within the first 24 h after admission (see figure 4 in reference 6).6

Conclusions: Because mortality may increase considerably (~8%) when BE is decreased by only 2 mmol/l, the clinical requirements for

To the Editor.—The problem of method-related errors, arising from different measuring technologies on calculation of the anion gap and the strong ion difference, was clearly demonstrated in patients in a recent study by Morimatsu et al.6 Mean values differed significantly, in some cases leading to a diverging assessment of the acid-base or electrolyte status. To a clinician, however, this is not acceptable.

All quantities, including the base excess (BE), used for diagnosis of nonrespiratory acid-base disturbances (e.g., metabolic, renal, or intestinal) are calculated quantities. Hence, each quantity must be assessed for reliability and associated diagnostic interpretation (normal range and normal values: mean ± SD; pathologic range). This greatly depends on the inaccuracy and imprecision of each of the measured primary values used in the particular calculation and on how these are propagated. BE is usually obtained with arterial blood from measured pH, partial pressure of carbon dioxide (Pco2), and hemoglobin-concentration in a blood gas analyzer, the strong ion difference from measured plasma electrolyte concentrations (e.g., Na, K, Cl, lactate).

For clinical practice, we propose the whole blood BE, which should be preferably used depending on the following considerations:

Inaccuracy of calculated BE: If correctly calculated, BE can be obtained from measured pH, Pco2, oxygen saturation, and total hemoglobin in any blood sample (venous or arterial). Over the whole range (−30 to +30 mmol/l), mean inaccuracy is less than 1 mmol/l.2

Normal values for BE and variability: Normal values for BE in arterialized capillary blood of men (n = 20) are −0.1 ± 1.2 mmol/l, and of women (n = 20), −1.0 ± 1.1 mmol/l.3 Variability of BE in healthy individuals is very low and could be reproduced if calculated also from measurement in venous blood. Typical results (mean ± SD) as obtained with blood from the vena cubitalis (50 healthy volunteers: colleagues and medical students) are shown in Table 1. Values for pH, Pco2, partial pressure of oxygen, and oxygen saturation were measured in a blood gas analyzer (AVL OMNI 9, Roche Diagnostics, Mannheim, Germany), calibrated with two precision buffers for pH (Radium phosphate buffer S 1500; S 1510), and the mean calculated BE was −0.1 ± 1 mmol/l. It should be noted that the SD of BE is still low, even though measured values used in the calculation varied largely (Table 1).

Tolerable values of inaccuracy: Representative normal values and maximal inaccuracy of the measured acid-base and electrolyte variables in blood, as tolerated by the recommendations of the German
To the Editor—Size selection of the Laryngeal Mask Airway™ (LMA™; Laryngeal Mask Company Limited, San Diego, CA) is important for avoiding complications and is based on patient body weight. The previously proposed formula for determining the appropriate LMA™ size is impractical because it contains the square root of the patient’s body weight. We advocate here an alternative formula: LMA™ size = 1 + BWru/20, where BWru indicates body weight (in kilograms) rounded up at the first digit. For example, if a patient’s body weight of 14 kg (BWru) is 20 because 14 can be rounded up to 20 at the first digit, the calculation would be as follows: LMA™ size = 1 + 20/20 = 1 + 1 = 2.

If the calculation of LMA™ size shows 3.5 or 4.5, we choose LMA™ #3 or #4. This manner of size selection agrees with the recommendation by Brimacombe and Brain. Alternatively, if the calculated LMA™ size is 3.5 or 4.5, we can also use LMA™ #4 or #5. This size selection is similar to the sex-based LMA™ size recommendation for adult patients.

Our formula is convenient for pediatric patients, although it cannot be used in infants weighing less than 5 kg. In addition, the formula does not require a pocket calculator.

Shuichi Hirai, M.D.*, Reiko Nakamura, M.D., Nobuhiro Maekawa, M.D. * Kagawa Medical School, Kagawa, Japan. shina_mon@hotmail.com

Support was provided solely from institutional and/or departmental sources.

References

(Received for publication June 20, 2003.)
Ten minutes after discontinuation of remifentanil, the patient started to breathe spontaneously, to respond to painful stimuli, and to buck on the tube. The trachea was extubated and the patient was transferred to the recovery room while receiving oxygen via a facemask. In the recovery room, the patient exhibited sleepiness, pinpoint pupils, and sluggish response to light glabellar tap or loud auditory stimulus, but she responded to painful stimulus (Ramsay scale 5). Her blood pressure ranged between 70/40 mmHg and 90/60 mmHg; the heart rate ranged between 50 and 60 bpm. The patient maintained spontaneous breathing at a rate of 8–10 breaths per minute. Her oxygen saturation measured by pulse oximetry while breathing room air was 90%; arterial blood gases showed P02 78 mmHg, PC02 44 mmHg, and pH 7.32. Oxygen saturation increased to 97% with oxygen via facemask. After 12 h, the patient started to respond to verbal stimuli and to have adequate spontaneous breathing, as evidenced by increased respiratory rate and by oxygen saturation of 95% while breathing room air.

Remifentanil is an esterase-metabolized opioid.1 The esterase-based metabolism of remifentanil makes its pharmacokinetics independent of end organ failure2,3 and results in a half-life of about 9–11 min.1

Our myasthenic patient had been receiving pyridostigmine for 2 months previous to the morning of surgery. Postoperatively, the patient remained somnolent for 12 h. This delayed postoperative arousal could not be attributed to the propofol, sevoflurane, or the small dose of morphine administered during surgery. Also, myasthenic respiratory depression was excluded because the T4/T1 ratio was greater than 0.9. The delayed arousal may be attributed to a possible inhibition of the nonspecific esterases hydrolyzing remifentanil by pyridostigmine.

Pyridostigmine is the traditional anticholinesterase that is used orally for the symptomatic management of myasthenia gravis. In addition to its anticholinesterase effect, Baraka et al. showed that pyridostigmine inhibits the plasma pseudocholinesterase (butyrylcholinesterase) by about 70%, which explains the low plasma cholinesterase activity and the prolonged neuromuscular block of succinylcholine in myasthenia gravis patients pretreated by pyridostigmine.5 However, remifentanil does not appear to be a substrate for butyrylcholinesterases.7,8 It is possible that pyridostigmine is a nonselective esterase inhibitor that may inhibit not only the acetylcholinesterase and butyrylcholinesterase enzymes, but also the nonspecific esterases that metabolize remifentanil with a subsequent delayed arousal.

Naloxone was not administered to confirm the diagnosis in our patient, and the blood concentrations of remifentanil were not measured. Therefore, the supposition that because pyridostigmine inhibits acetylcholinesterase and butyrylcholinesterase it might also inhibit the enzymes responsible for remifentanil’s metabolism is purely speculative. However, the present report calls to our attention that myasthenia gravis patients maintained on a pyridostigmine regimen up to the morning of surgery may be extremely sensitive to drugs metabolized by nonspecific esterases such as remifentanil.

Anis S. Baraka, M.D., F.R.C.A.,* Sanie T. Haroun-Bizri, M.D., Frederic J. Gerges, M.D.*

References

(Accepted for publication September 16, 2003.)