The Spinal Antinociceptive Effect of Nocistatin in Neuropathic Rats Is Blocked by D-Serine

Uta Muth-Selbach, M.D.,* Eva Dybek,† Katrin Kollosche,† Jens-Ulrich Stegmann, M.D.,* Holger Holthusen, M.D.,‡ Peter Lipfert, M.D.,§ Hanns Ulrich Zeilhofer, M.D.¶

Background: The neuropeptide nocistatin (NST) has been implicated in the modulation of nociceptive responses in the spinal cord. Depending on the dose, both pronociceptive and antinociceptive effects have repeatedly been reported. The pronociceptive effect is most likely attributable to inhibition of synaptic glycine and γ-aminobutyric acid release and a subsequent reduction in the activation of inhibitory glycine and γ-aminobutyric acid receptors, but the mechanisms of its antinociceptive action have hitherto remained elusive. It has recently been demonstrated that synaptically released glycine contributes to N-methyl-D-aspartate receptor activation. The authors therefore investigated whether a reduction in glycine release might also account for the antinociceptive action of NST in neuropathic rats.

Methods: The authors analyzed the effects of spinally applied NST in the chronic constriction injury model of neuropathic pain. NST was injected intrathecally from nanomolar to picomolar doses and its effects on thermal paw withdrawal latencies were monitored. Furthermore, we tested whether D-serine (100 μg per rat), a full agonist at the glycine binding site of the N-methyl-D-aspartate receptor, would interfere with the effects of NST.

Results: At high doses (10 nmol/rat), intrathecally injected NST was pronociceptive, whereas lower doses (1 pmol/rat) elicited antinociception. The antinociceptive, but not the pronociceptive, action was occluded by intrathecal pretreatment with D-serine. L-serine, which does not bind to N-methyl-D-aspartate receptors, affected neither the pronociceptive nor the antinociceptive effect.

Conclusions: These results demonstrate that NST produces a biphasic dose-dependent effect on neuropathic pain. The spinal antinociception by NST is most likely attributable to inhibition of glycine-dependent N-methyl-D-aspartate receptor activation.

THE neuropeptide nocistatin (NST) has originally been described as a functional antagonist of nociceptin induced hyperalgesia and allodynia.1–4 Meanwhile several lines of evidence indicate that NST is a biologically active peptide per se.5,6 In the spinal cord, NST inhibits the release of the two major fast inhibitory neurotransmitters glycine and γ-aminobutyric acid but does not interfere with the release of the excitatory neurotransmitter L-glutamate.7 This action is restricted to the dorsal horn, the site of spinal sensory processing. It is absent in the ventral horn, the site of spinal motor control.8

NST can modulate nociception in opposite directions after intrathecal application. High nanomolar doses facilitate, whereas significantly lower doses inhibit, nociceptive responses in the formalin test.5,6 It appears reasonable to assume that the pronociceptive effects of NST originate from a reduction in the synaptic release of glycine (and γ-aminobutyric acid) and a subsequent reduction in the activation of inhibitory strychnine-sensitive glycine (and γ-aminobutyric acid) receptors.

During recent years increasing evidence has accumulated indicating that glycine not only serves as the primary inhibitory neurotransmitter in the spinal cord and brain stem but also may contribute to neuronal excitation.8–10 To fully activate N-methyl-D-aspartate (NMDA) receptors, the binding of glycine or D-serine at the glycine binding site of the NMDA-receptor is needed.11–13 The affinity of glycine to NMDA receptors is even two to three orders of magnitude higher than that of glycine to strychnine-sensitive glycine receptors (100–300 nM versus 50 μM).14,15 We recently suggested that glycine released from inhibitory interneurons may thus facilitate the activation of excitatory glutamate receptors of the NMDA subtype through a process called spillover.16 In the present study, we have addressed the question of whether a reduction in glycine release and a subsequent inhibition of NMDA receptor activation may underlie the antinociceptive action of NST in neuropathic pain.

To address this question we have employed the chronic constriction injury model of neuropathic pain.16 We show that NST dose-dependently exerts antinociceptive and pronociceptive effects in neuropathic rats. We further demonstrate that the antinociceptive effect is selectively occluded after pretreatment with spinal D-serine, which can fully substitute for the binding of glycine to NMDA receptors.

Materials and Methods

All behavioral tests were performed with permission of the local government (Bezirksregierung Düsseldorf, Düsseldorf, Germany) and were in accordance with the guidelines of the International Association for the Study of Pain.

The pronociceptive or antinociceptive effects of NST were analyzed in the chronic constriction injury (CCI)
model.16 Wistar rats weighing 350–400 g were anesthe-
tized with intraperitoneal injection of pentobarbital (60 mg/kg). Unilateral constriction injury of the left sciatic nerve just proximal to the trifurcation was per-
formed with four loose ligatures as previously de-
scribed.16 In sham-operated animals the nerve was ex-
posed, the connective tissue was freed, and no ligatures
were applied. In addition, the rats were implanted with
polyethylene catheters (inner diameter, 0.28 mm; outer
diameter, 0.61 mm) that were advanced from the cist-
terna magna to the rostral edge of the lumbar enlarge-
ment. Rats with impaired motor function after implanta-
tion of the catheter were excluded from the study. Heat
hyperalgesia was tested 6–10 days after surgery in an
air-conditioned room. The lateral plantar surface of both
hind paws was exposed to a defined radiant heat stimu-
lus through a transparent Perspex surface (Ugo Basile,
Comerio VA, Italy) and paw withdrawal latencies were
recorded.17 A cutoff time of 20 s was set to avoid tissue
damage. Paw withdrawal latencies of both hind paws
were determined from three independent measurements
for each time point. Only rats that exhibited signi-
ficant lowered thermal withdrawal latencies after CCI were
included in the study.

Behavioral testing as described above was performed
once before CCI, once immediately before application of
drugs, and seven times after application of drugs at
regular intervals of 5 min. NST, D-serine, L-serine, or
vehicle (0.9% NaCl) was applied to the spinal cord
via intrathecal catheters in a total volume of 10 μl. Rats were
randomly assigned to the different treatment groups con-
sisting of seven to 10 rats each. All behavioral observa-
tions were performed in a blinded fashion.

After the behavioral tests, rats were sacrificed by a
lethal intraperitoneal dose of pentobarbital. Proper po-

tion of the catheter tip was verified after laminectomy
and methylene blue injection through the catheter.

Peptides and Chemicals

rNST1-17 (rat preproN/OFQ 116–132) was obtained
from Research Genetics (Huntsville, AL). D-serine and
L-serine were purchased from Sigma (Deisenhofen, Ger-
many). All chemicals were dissolved in 0.9% NaCl and
stored in aliquots at −20°C. Fresh dilutions were made
with 0.9% NaCl on every experimental day.

Statistical Analysis

Group data are presented as mean ± SE (SEM). With-
drawal latencies in the different treatment groups were
analyzed by repeated measures analysis of variance fol-
lowed by Bonferroni post hoc tests. P ≤ 0.05 was as-
sumed significant. In detail, in the experiments assessing
the effect of the different doses of NST, each of the
five doses used was compared with saline at seven time
points (5 to 35 min). In the experiments comparing low
and high dose NST with and without D-serine (or L-
serine) four comparisons were made at seven time
points.

Results

Ninety percent of rats with loose ligature of the left
sciatic nerve developed thermal hyperalgesia with signif-
icantly lowered thermal paw withdrawal latencies on the
left side. No statistically significant changes in thermal
withdrawal latencies occurred in the right (uninjured)
paw or in sham-operated rats (figs. 1 and 2).

When injected intrathecally NST dose-dependently ex-

terted pronociceptive or antinociceptive effects in the
CCI model. Low doses were antinociceptive whereas
higher doses elicited a profound pronociceptive effect
(fig. 1). Five minutes after injection of 1 pmol NST paw
withdrawal latencies in the left (injured) paw were 7.7 ±
0.3 s, compared with 5.3 ± 0.2 s after vehicle injection
(P ≤ 0.05, n = 7 and 8). At a dose of 10 nmol, NST
decreased paw withdrawal latencies from 5.1 ± 0.1 s
to 3.7 ± 0.3 s at 10 min after injection (P ≤ 0.05, n = 8
each) (fig. 1). Within 25 min after administration of NST
thermal withdrawal latencies had returned to preinjec-
tion values (fig. 1). NST affected thermal paw with-
drawal latencies not only in the injured (left) paw but
also in the right (uninjured) paw (fig. 1) (i.e., 5 min after
injection of 1 pmol NST versus control: 13.4 ± 1.1
versus 9.4 ± 0.7; 10 min after injection of 10 nmol NST
versus control: 6.6 ± 0.3 versus 9.4 ± 0.7; P ≤ 0.05,
N = 7 and 8). In contrast, in sham-operated rats neither
10 nmol nor 1 pmol NST changed thermal withdrawal
latencies (fig. 2).

In CCI rats, pretreatment with D-serine (100 μg per
rat) prevented the antinociceptive action evoked by low
doses of NST in both the left (injured) paw and in the
right (uninjured) paw. For example, paw withdrawal
latencies (1 pmol NST plus 100 μg D-serine versus
1 pmol NST) were 5.2 ± 0.3 s versus 7.8 ± 0.2 s in the
left (injured) paw and 7.4 ± 0.5 s versus 13.6 ± 0.6 s in
the right paw (P ≤ 0.05, n = 10 each) 5 min after
injection of NST (fig. 3). In contrast, pretreatment with
L-serine (100 μg per rat), which does not bind to NMDA
receptors, had no effect on the antinociception induced
by low-dose NST (e.g., 7.6 ± 0.3 s versus 7.8 ± 0.2 s,
paw withdrawal latencies in the left injured paw and
12.9 ± 0.7 s versus 13.6 ± 0.6 s in the right uninjured
paw, not signi-
cant, n = 10 each, again 5 min after
injection of NST; fig. 3).

Neither D-serine nor L-serine per se had any signifi-
cant effect on the duration of the thermal withdrawal
latencies in the CCI model compared with vehicle-
treated animals (e.g., paw withdrawal latencies 5 min after drug injection in D-serine treated animals were 5.2 ± 0.3 s and in L-serine treated animals 5.3 ± 0.4 s versus 5.5 ± 0.2 s after vehicle injection in the left injured paw and 10 ± 3 s/9.8 ± 0.4 s versus 9.4 ± 0.7 s in the right uninjured paw; n = 8–10, not significant; fig. 4).

Discussion

Pronociception and Antinociception of NST in the Chronic Constriction Injury

Both pronociception and antinociceptive effects of spinally applied NST have repeatedly been described.5–7,18–20 Our results suggest that these discrepant results might be explained by the fact that different doses were used in the various studies. In our experiments picomolar doses of NST elicited robust antinociception in the chronic constriction injury in both paws, whereas pronociception was elicited when nanomolar doses were employed. This dose-dependent action has already been described in the formalin test,8 which renders the possibility unlikely that pronocceptive or antinociceptive effects depended on the pain model used. In contrast, same doses of NST did not change thermal withdrawal latencies in either paw in sham-operated rats (fig. 2), indicating that the observed effects of NST are specific for neuropathic pain and are not present in rats without ongoing pain or neuropathic changes.

Seemingly conflicting results have recently been reported by Ma et al.21 They injected 10 µg (i.e., approximately 10⁻⁹ m) bovine nocistatin intrathecally in rats.

Fig. 1. Effects of nocistatin (NST) on the nociception in the chronic constriction injury model. (A and B) Dose-dependent effects of rNST1–17 on pain-related behavior in neuropathic rats (chronic constriction injury). Thermal withdrawal latencies (mean ± SEM) (in s) of rats treated with different doses of rNST1–17 injected intrathecally versus time. 10⁻⁸, 10⁻⁶, 10⁻⁴, 10⁻¹ M/rat, and vehicle. Arrow indicates time of rNST1–17 injection. (C) Dose-response relationship for rNST1–17 for the left, injured, paw (●) and the right, uninjured, paw (○) 10 min after intrathecal injection of rNST1–17. Values normalized to vehicle treated animals. ∗P < 0.05, ∗∗P < 0.01 versus vehicle-treated animals, n = 7 to 8 rats per group.

Fig. 2. Nocistatin (NST) in sham-operated rats. Thermal withdrawal latencies (mean ± SEM) (in s) of rats treated with different doses of rNST1–17 injected intrathecally versus time. 10⁻⁸ and 10⁻⁶ M/rat, vehicle. Arrow indicates time of rNST1–17 injection. n = 6 to 8 rats per group.
with chronic constriction injury and thermal withdrawal latencies were not changed \textit{versus} control. Indeed, this dose of NST only blocked the analgesic effect of its functional antagonist nociceptin but had no effect \textit{per se}. Other doses were not tested by Ma \textit{et al.}²¹ We obtained similar results by intrathecal injection of rat NST1–17 in a dose of 10⁻¹² M/rat rNST1–17, 10⁻¹⁰ M/rat rNST1–17 with 100 μg D-serine or L-serine, 10⁻⁸ M/rat rNST1–17, 10⁻⁶ M/rat rNST1–17 with 100 μg D-serine or L-serine. Arrow indicates time of drug injection. \(^* P \leq 0.05 \text{rNST1–17 versus rNST1–17 with D-serine, n = 10 rats per group.} \)

with chronic constriction injury and thermal withdrawal latencies were not changed \textit{versus} control. Indeed, this dose of NST only blocked the analgesic effect of its functional antagonist nociceptin but had no effect \textit{per se}. Other doses were not tested by Ma \textit{et al.}²¹ We obtained similar results by intrathecal injection of rat NST 1–17 in a dose of 10⁻¹⁰ M per rat, which had no effect on thermal withdrawal latencies. However, the higher dose of 10⁻⁸ M NST per rat elicited pronociception and 10⁻¹² M NST per rat elicited antinociception (fig. 1).

Unlike many other neuropeptides, NST is not very well conserved among different species. In this context it is noteworthy that similar results were obtained in the present study, which employed a peptide consisting only of the 17 C-terminal amino acids, and in a previous study by our group, which used the complete peptide consisting of 35 amino acids.²⁸ Previously we had already reported that both peptides exerted almost identical effects on dorsal horn synaptic transmission.²⁷

Here, we show that both pronociceptive and antinociceptive action of NST is restricted to the first 20 to 25 min after injection of NST. This may be explained by rapid degrading of the neuropeptide NST by endogenous peptidases.²⁰

We tested only thermal hyperalgesia and not mechanical allodynia in neuropathic pain. In other pain behavior tests the results may be different.

Possible Mechanism of Action of Nocistatin
So far the only well documented effect of NST on the cellular level is its inhibitory action on the synaptic release of the spinal inhibitory neurotransmitters glycine and \(\gamma \)-aminobutyric acid. This effect is restricted to the dorsal horn of the spinal cord and is pertussis toxin sensitive, indicating that it most likely occurs through the activation of a yet to be identified transmembrane receptor coupling to Gi/Go proteins.²⁷

Antinociception by NST was completely prevented or even converted into a pronociceptive action by pretreat-

Fig. 3. Effect of D-serine on the pronociceptive and antinociceptive effects of nocistatin (NST) in the chronic constriction injury model (CCI). Thermal withdrawal latencies (mean ± SEM) (in s) in neuropathic rats (CCI) injected intrathecally with: 10⁻¹² M/rat rNST1–17, 10⁻¹⁰ M/rat rNST1–17 with 100 μg D-serine or L-serine, 10⁻⁸ M/rat rNST1–17, 10⁻⁶ M/rat rNST1–17 with 100 μg D-serine or L-serine. Arrow indicates time of drug injection. \(^* P \leq 0.05 \text{rNST1–17 versus rNST1–17 with D-serine, n = 10 rats per group.} \)

Fig. 4. D- and L-serine in the chronic constriction injury model. Thermal withdrawal latencies (mean ± SEM) (in s) of rats treated with D-serine (100 μg), L-serine (100 μg), or vehicle injected intrathecally \textit{versus} time. Arrow indicates time of drug injection. \(n = 8 \text{ to 10 rats per group.} \)
ment with D-serine, which is a full agonist at the glycine-binding site of NMDA receptors but inactive at strychnine-sensitive glycine receptors. The specific prevention of NST-mediated antinociception by D-serine indicates the pivotal role of glycine binding to NMDA receptors in this process. A significant contribution of glycine to the activation of NMDA receptors in painful diseases is also evident from the antinoceptive effect of glycine site antagonists (so-called glycineB antagonists) in various pain models. We have recently shown that glycine released from spinal inhibitory interneurons can escape the synaptic cleft and reach nearby NMDA receptors via diffusion, a process that is called spillover, and that this process is relevant in vivo in tonic pain, i.e., in the formalin test in rats.

The present data now suggest (in accordance with our previous data) that NST inhibition of synaptic glycine release not only reduces the activation of strychnine-sensitive glycine receptors but may also lead to a diminished NMDA receptor activation in chronic neuropathic pain. Thus the effect on NMDA receptors dominates over that on inhibitory glycine receptors at low doses of NST (resulting in antinociception), whereas disinhibition, i.e., reduced activation of strychnine sensitive glycine receptors, dominates at higher doses of NST (resulting in pronociception). In our previous publication we proposed a cellular basis for our present observations. In principle, it is possible that D-serine has a pronociceptive effect by itself and acts through an mechanism independent from nocistatin in neuropathic pain. However, D-serine has no effect when given alone (fig. 4), which argues against this. In addition, at least for the formalin test, D-serine did not antagonize the antinoceptive effect of MK-801, which blocks NMDA receptors independent of the glycine-binding site.

Several factors might contribute to the different dose-dependencies observed for the antinoceptive versus pronociceptive effects of NST (fig. 1). First, the affinities of glycine at strychnine-sensitive glycine inhibitory glycine receptors and at NMDA receptors differ by two to three orders of magnitude. Furthermore, NMDA receptors are located further away from glycine release sites than strychnine sensitive glycine receptors and glycine transporters located between glycinerergic terminals and NMDA receptors may significantly affect the glycine concentration at NMDA receptors after synaptic release of glycine. In addition, it is well possible that reduction in NMDA receptor activation and inactivation of strychnine-sensitive glycine receptors responsible for the antinoceptive and pronociceptive effects may occur in different laminae of the spinal cord. Local intrathecal injection most likely will result in a concentration gradient of NST through the spinal cord.

Interestingly, D-serine not only reversed in the right, uninjured, paw (as in the left, injured, paw) the antinoceptive effect induced by low-dose NST but actually produced pronociception. One possible explanation for this effect is that the glycine site of the spinal NMDA receptor on the right, uninjured, side is not saturated under the conditions of peripheral mononeuropathy (in contrast to the left, injured, side, where full saturation seems reasonable).

The responsiveness of the contralateral side to NST application confirms previous reports that central changes after unilateral nerve injury are not restricted to the side of the injury. Numerous reports suggest that unilateral nerve injury also leads to morphological changes in the contralateral side similar to those seen on the injured side. In our study thermal hyperalgesia could not be detected in the contralateral side, i.e., thermal withdrawal latencies were not lowered after CCI in the uninjured (right) paw. However, after NST application the contralateral paw showed responses similar to those seen on the injured side, indicating that the contralateral side is also influenced by an increase in glycine acting at the NMDA receptor. These observations resemble those by Vissers et al., who have found CCI-induced cold allodynia only in the injured side. However, both injured and noninjured sides were similarly hypersensitive to formalin-induced nociception. One might therefore speculate that the detection of subtle changes in contralateral pain sensitivity requires more sophisticated interventions.

In summary, our results provide further support for a relevant contribution of glycine to spinal nociceptive processing. They suggest that synaptically released glycine may not only act as an inhibitory neurotransmitter, but may also facilitate NMDA receptor-mediated excitation. Modulation of extracellular glycine concentration may be achieved by targeting glycine transporters that regulate or limit spillover or by activation of a putative NST receptor. One should consider, however, that modulation of extracellular glycine concentration has the potential to exert pronociceptive action in addition to antinociception, probably depending on extracellular glycine concentration and the precise site of action.

Given the pivotal role NMDA receptors serve in plastic changes in nociceptive transmission and in the development of chronic pain states, one might speculate that inhibition of NMDA receptor function via modulation of extracellular glycine concentrations may be considered a novel strategy for the prevention or treatment of pathologic pain states.

References

Anesthesiology, V 101, No 3, Sep 2004
neuropeptide that activates an opioidlike G protein-coupled receptor. Science 1995; 270:792–4
10. Supplisson S, Bergman C: Control of NMDA receptor activation by a glycine transporter co-expressed in Xenopus oocytes. J Neurosci 1997; 17:4580–90
24. Kolzenburg M, Wall PD, McMahon SB: Does the right side know what the left is doing? Trends Neurosci 1999; 22:122–7

Anesthesiology, V 101, No 3, Sep 2004