CORRESPONDENCE

Prolonged Wear of Antichemical Protective Gear: The Hazards and Difficulties of Wearing Chemical Warfare Gear

To the Editor.—The interesting article by Flaishon et al.1 included prospective data on the difficulties of performing anesthetic and critical care duties in mass casualty situations. An additional factor to consider is the challenge of continuing to perform one’s duties while wearing full antichemical protective gear.

As a member of the Air National Guard, I am obligated to perform chemical warfare training. Wearing the full MOPP 4 antichemical warfare ensemble is uncomfortable, especially in warm environments such as the Middle East. The clinician must contend with the intrinsic difficulties of wearing the suit and be mindful of preventing his own severe dehydration and the need to be resuscitated himself. Most United States civilians do not appreciate the need to maintain adequate hydration. In the Middle East, constant hydration is a way of life. Military personnel have become familiar with disaster management concepts. In the future, such training will be mandatory for civilians as well. The Society of Critical Care Medicine (Des Plaines, IL) sponsored its first course on disaster medicine at its annual meeting this year to provide civilian clinicians with the basic concepts of disaster management. The course will heighten awareness of the challenges of airway management as well as the challenges and hazards of extended wear of chemical warfare gear.

Eric L. Bloomfield, M.D., M.S., F.C.C.M. Mayo Clinic, Jacksonville, Florida. bloomfield.eric@mayo.edu

Reference


(Accepted for publication June 21, 2004.)

In Reply.—We thank Dr. Bloomfield for his comments. We share his concern regarding the troublesome antichemical gear and discussed it in our article.1 The psychological and performance effects of the protective gear have also been previously addressed.2 Stressful exercise causes fluid shifts, dehydration, and heat stroke, which must be prevented or treated if encountered.3,4 The antichemical suit further hampers temperature regulation and is recognized as a cause of dehydration.

In the Middle East, especially during the summer, dehydration and heat stroke are common, especially in the elderly and in civilians or army corps involved in outdoor strenuous exercise.5 We agree with Dr. Bloomfield that the first step in preventing dehydration and heat stroke is training and education.

It is important to note that according to chemical attack protocols, civilians are expected to wear only an antichemical facemask rather than the full protective gear. The problems mentioned are of major concern for those wearing the full protective suit, namely trained personnel, military and medical, who are required to treat and evacuate attack victims as well as perform other military operations while under such an attack.

Ron Flaishon, M.D., Alexander Sotman, M.D., Ron Ben-Abraham, M.D., Valery Rudick, M.D., David Varssano, M.D., Avi A. Weinbroum, M.D.* *Tel Aviv Sourasky Medical Center, Tel Aviv, Israel. draviw@tasmc.health.gov.il

References


(Accepted for publication June 21, 2004.)

Anesthesiology 2004; 101:1478–9

Cardiac Arrest, a Preventable yet a Possible Risk of Dexmedetomidine: Fact or Fiction?

To the Editor.—We read with interest the well-written case report “Dexmedetomidine and Cardiac Arrest.”1 The inference of the authors seems to be simple, but a closer look reveals the omission of many implicating factors that would have contributed to the morbidity attributed to dexmedetomidine. Therefore, we dispute the conclusions. We believe that the patient received an excessive dose of dexmedetomidine after significant doses of other anesthetics and there was delay in treating the bradycardia. We believe that the progression to cardiac arrest could have been potentially prevented.

Dosing of 10 mg of midazolam during the placement of epidural catheter, 250 μg of fentanyl, and 200 mg of propofol for induction and maintenance at 0.9% isoflurane after a loading dose of dexmedetomidine at 1 μg/kg, followed by 0.2 μg·kg·h−1 by infusion, seems to be excessive.2 Even with normal dosing hypotension and bradycardia are the most common side effects of dexmedetomidine.2 The concomitant use of anesthetics, sedatives, hypnotics, and opioids has synergistic effects and may worsen bradycardia and hypotension. There may also have been increased vagal activity as a result of pyridostigmine and a
Dexmedetomidine and Asystole

To the Editor—We read with great interest the report of a cardiac arrest during dexmedetomidine use in a patient with myasthenia gravis. In this case the interaction of pyridostigmine and epidural anesthesia was cited as possible contributors to this complication. We would like to add our own experience with dexmedetomidine. We began to use it in 20- to 40-yr-old healthy patients scheduled for laparoscopic gynecological procedures under sevoflurane and fentanyl anesthesia plus cisatracurium for neuromuscular blockade. Dexmedetomidine was infused by the “sufentanil” program of an Anne® intravenous infusion pump (Abbott Laboratories, North Chicago, IL) with an initial infusion of 4 μg·kg⁻¹·h⁻¹ for 15 min followed by 0.3 μg·kg⁻¹·h⁻¹. After 40 patients were anesthetized using this technique, there was one case of severe bradycardia (32 beats/min) and one case of asystole. No patient received pyridostigmine or had epidual anesthesia instituted.

This event of asystole occurred while the patient was in Trendelenburg position with the peritoneal cavity insulated with carbon dioxide (12 cmH₂O), and it lasted less than 2 min, responding to abdominal deflation, horizontal positioning, intravenous atropine 1 mg, and a brief period of thoracic compressions. End-tidal carbon dioxide and capnographic curve were normal before and after the asystole. We wonder if the incidence of asystole with dexmedetomidine is different from that with other anesthetic drugs. A study to verify the safety and not only the efficacy of this new drug should be undertaken while more subtype-selective α₂ receptor agonists with decreased side effects are awaited for clinical practice.

Rogério L. R. Videira, M.D.,* Roberto Manara V. Ferreira, M.D.
* Hospital das Clínicas da Universidade de São Paulo and Universidade Federal do Estado de São Paulo, São Paulo, Brazil.
rovid@uol.com.br

References
1. Ingersoll-Weng E, Manecke GR, Thistlethwaite PA: Dexmedetomidine and cardiac arrest. ANESTHESIOLOGY 2004; 100:738–9

(Accepted for publication June 25, 2004.)
be the case, but the loading dose (1 μg/kg over 10 min) was exactly as
recommended by the manufacturer in the package insert and the
infusion rate (0.2 μg·kg⁻¹·h⁻¹) was at the low end of the recom-
manded range. Whether or not our dosing was excessive, it was in line
with the recommendations of the manufacturer.

We agree there were multiple factors involved; this was a main point
of the article. Also, the assertion that the asystole could have been
avoided if the bradycardia had been treated earlier is well taken. The
bradycardia in question, however, was an easily explained (by the
dexmedetomidine loading dose) decrease in heart rate to 46–50 beats/
min with stable blood pressure. Treating this in a patient with good
cardiovascular health would ordinarily seem unnecessary. We now
believe that even mild, hemodynamically stable bradycardia in the
presence of dexmedetomidine and other negative chronotropic influ-
ences should be treated. The view through our “retrospectoscope”
confirms this.

We appreciate Drs. Videira and Ferreira sharing their experiences
and agree that a large-scale safety study of the drug should be consid-
ered. We believe that when used appropriately, dexmedetomidine is
very safe and useful. Perhaps by performing such a study and sharing
our experiences with the drug, we, as a community, can avoid future
closed claims analyses and unnecessary “black box” Food and Drug
Administration warnings.

Gerard R. Manecke Jr., M.D.,* Esperanza Ingersoll-Weng, M.D.,
and Patricia A. Thistlethwaite, M.D., Ph.D. * Thornton Hospital,
La Jolla, California. gmanecke@ucsd.edu

Reference

1. Ingersoll-Weng E, Manecke GR, Thistlethwaite PA: Dexmedetomidine and
cardiac arrest. ANESTHESIOLOGY 2004; 100:758–9

(Received for publication June 25, 2004.)

Treatment of Rebound Pulmonary Hypertension: Why Not
Sildenafil?

To the Editor:—I read with great interest the case report by Augous-
tides et al.1 published in the April issue of ANESTHESIOLOGY. They
highlight the important issue of rebound pulmonary hypertension after
withdrawal of inhaled prostacyclin and make a case for the use of
inhaled iloprost. They propose that inhaled iloprost may allow gradual
controlled withdrawal of perioperative inhaled selective pulmonary
vasodilation, probably as a result of its favorable pharmacokinetics.
Hence, in their opinion it has great promise in the management of
perioperative pulmonary hypertension after cardiac surgery. However,
I think that if the authors had highlighted the advantages of using
sildenafil, instead of iloprost, in this scenario their case report would
have made a more lasting and useful contribution to the existing
literature on the topic of management of rebound pulmonary
hypertension.

Pulmonary hypertension remains a major complication after surgical
correction of congenital and long-standing valvular heart disease. In-
haled nitric oxide has been shown to reduce, but not eliminate,
potentially life-threatening episodic pulmonary hypertensive crises.2
Nitric oxide increases intracellular cyclic guanosine monophosphate,
resulting in smooth muscle vasodilation. Phosphodiesterase type 5 is
responsible for cyclic guanosine monophosphate breakdown in lung
tissue. Abrupt discontinuation of nitric oxide may be complicated by
life-threatening events, and phosphodiesterase activity may play a role
in this phenomenon.3 Sildenafil (Viagra; Pfizer Laboratories, New York,
NY), a selective and potent inhibitor of phosphodiesterase type 5,
augments pulmonary vasodilation with nitric oxide and reduces the
risk of pulmonary hypertensive crises in an at-risk postoperative pa-
tient.4 Furthermore, it ameliorates the rebound pulmonary hyper-
tension caused by withdrawal of inhaled pulmonary vasodilators.5

Compared with the standard treatment, inhaled nitric oxide, silde-
nafil is superior in decreasing the mean pulmonary artery pressure and
equally effective and selective in reducing pulmonary vascular resis-
tance.6 It also causes a significant increase in the cardiac index.7 Its
availability in oral, inhaled and intravenous forms, longer half-life of
4 h,8 and proven efficacy in randomized controlled trials9,10 are some of
the distinguishing features which make sildenafil first-choice agent for
managing rebound pulmonary hypertension.

Thus, my question for Augoustides et al. is “Why inhaled iloprost and
not sildenafil?”

Shahzad G. Raja, M.R.C.S. Alder Hey Hospital, Liverpool, United
Kingdom. drrajashahzad@hotmail.com

References

1. Augoustides JG, Culp K, Smith S: Rebound pulmonary hypertension and
cardiogenic shock after withdrawal of inhaled prostacyclin. ANESTHESIOLOGY 2004;
100:1023–5

nitric oxide and prevention of pulmonary hypertension after congenital heart

3. Ivy DD, Kinsella JP, Ziegler JW, Abman SH: Dipyridamole attenuates re-
bound pulmonary hypertension after inhaled nitric oxide withdrawal in postop-

4. Atz AM, Lefler AK, Fairbrother DL, Uber WE, Bradley SM: Sildenafil aug-
ments the effect of inhaled nitric oxide for postoperative pulmonary hyperten-

5. Atz AM, Weisel DL: Sildenafil ameliorates effects of inhaled nitric oxide
withdrawal. ANESTHESIOLOGY 1999; 91:307–10

sildenafil is an effective and specific pulmonary vasodilator in patients with
pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circula-
tion 2002; 105:2398–403

7. Stocker C, Penny DJ, Brizard CP, Cochrane AD, Soto R, Shekerdemian LS:
Intravenous sildenafil and inhaled nitric oxide: A randomised trial in infants after

8. Bhaznani A, Mathew V, Sahu A, Lunia B: The efficacy and tolerability of
sildenafil in patients with moderate-to-severe pulmonary hypertension. Indian
Heart J 2003; 55:55–9

9. Ghofrani HA, Wiedemann R, Rose F, Schermuly RT, Obschewski H, Weiss-
mann N, Gunther A, Walmrath D, Seeger W, Grimminger F: Sildenafil for treat-
ment of lung fibrosis and pulmonary hypertension: A randomised controlled trial.
Lancet 2002; 360:895–900

(Received for publication July 27, 2004.)
In Reply.—I thank Dr. Raja for an excellent appraisal of the role of sildenafil (Viagra; Pfizer Laboratories, New York, NY) in the management of rebound pulmonary hypertension after withdrawal of inhaled prostacyclin, as highlighted in our recent case report.1 Dr. Raja has correctly highlighted that sildenafil is an alternative to iloprost in this setting.2,7 Our discussion of iloprost in the case report focused on its advantages over inhaled prostacyclin in the withdrawal of inhaled pulmonary vasodilator therapy. The pharmacokinetics of iloprost highlight a limitation of inhaled prostacyclin, namely its short half-life, that may facilitate serious rebound pulmonary hypertension.

However, this discussion was by no means intended to minimize the role of alternative approaches to the management of rebound pulmonary hypertension. As emphasized, a tiered multimodal therapeutic approach to pulmonary hypertension is essential for successful management.1,8,9 Indeed, this multimodal therapeutic approach to this clinical scenario not only includes sildenafil but also extends beyond this agent. The withdrawal of inhaled pulmonary vasodilators with a short half-life (nitric oxide, prostacyclin) should be managed in the setting of optimized ventilation, and where required, sufficient supplemental pulmonary vasodilator, whether inhaled, intravenous, or oral. There is a wide selection of possible agents that may be administered alone or in synergistic combination.6,10 The choice of regimen should also take into account drug availability, drug familiarity, and patient idiosyncrasies.

In summary, rebound pulmonary hypertension with withdrawal of nitric oxide or prostacyclin should be approached in a tiered multimodal fashion. Although sildenafil is eminently suitable, it is but one of a possible menu of pharmacologic choices.

John G. Augoustides, M.D. Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania. yiandoc@hotmail.com

References

(Accepted for publication July 27, 2004.)
In Reply.—We thank Dr. Huang for his interesting comments. We agree that frequent control of the correct needle position by the use of fluoroscopy is important during interventional pain procedures. The depth of the needle position on a lateral view is important because antinflammatory agents must be injected as close as possible to the site of pathology; i.e., in the anterior plane of the epidural space. With respect to the presented anteroposterior view (Fig. 2a in our article) and in accordance with another review, the insertion of the needle no further medial than the six o’clock position in the anteroposterior view reduces the risk of dural puncture. Moreover, when our needle had been positioned intradurally at this level, a discogram could not have been explained.

Finally, low back pain and sciatica resulting from migrated disc herniations are an indication for transformative epidural infiltrations. By placing the needle in a correct fluoroscopic position, the needle can accidentally encounter a rostrally displaced disc herniation, which possibly explains this unexpected event. Our finding emphasizes the use of fluoroscopy in interventional pain procedures.

To the Editor.—Boselli et al. are to be congratulated on their excellent study of patient-controlled epidural analgesia in labor. The merit of a background infusion in addition to boluses of epidural solution on patient demand has been contested for many years. The finding by Ferrante et al. that some rates of infusion appeared to reduce the requirement for additional supplementary boluses may have influenced North American practice, where continuous infusion techniques are popular and physician workload is an important issue. In contrast, demand-only patient-controlled epidural analgesia is also associated with good efficacy and high maternal satisfaction. Even in countries where midwife-administered supplementation is not permitted, such as Belgium, patient-controlled epidural analgesia is usually delivered without a background infusion (verbal communication, May, 2004, Marc Van de Velde, M.D., Ph.D., Professor, Department of Anesthesiology, U.Z. Gasthuisberg, Leuven, Belgium).

Boselli et al. are incorrect, however, in stating that only two studies have previously compared the efficacy and local anesthetic consumption of patient-controlled epidural analgesia with or without background infusion. I conducted the first of such studies in 1991 and no benefit from a background infusion was found, albeit in a small sample size. I conducted the first of such studies in 1991 and no background infusion is not beneficial; indeed that it increases drug consumption and cost without improving maternal comfort or satisfaction.

Michael Paech, D.M., F.A.N.Z.C.A. University of Western Australia and King Edward Memorial Hospital for Women, Perth, Australia. michael.paech@health.wa.gov.au

References
1. Boselli E, Debon R, Cimino Y, Rimmele T, Allouchiche B, Chassard D. Background infusion is not beneficial during labor patient-controlled analgesia with 0.1% ropivacaine plus 0.5 μg/ml sufentanil. Anesthesiology 2004;100:968–72
5. D’Angelo R. Epidural PCA during labor. ASA Newsletter 2001; 65:116–8

(Received for publication July 28, 2004.)
Cholinesterase Inhibitors, Neuromuscular Blocking Drugs and Perioperative Memory Enhancement

To the Editor:—I read the fascinating review by Dr. Ghoneim with great interest, especially the section on memory-enhancing or memory-imparing drugs. Anesthetics impair memory function in perisurgical periods, whereas cholinesterase inhibitors enhance memory and act at central muscarinic cholinergic receptors involved in the process of memory consolidation. Cholinesterase inhibitors donepezil, galantamine, and rivastigmine, currently in clinical use, represent the first line of treatment in Alzheimer disease and the only drugs of proven benefit. Other cholinesterase inhibitors (i.e., physostigmine) are under clinical evaluation.

Drugs affecting central cholinergic activity also influence the anesthetic effect. Increasing central cholinergic tone with physostigmine antagonizes the hypnotic effect of propofol, shown by the return of consciousness (defined as responsiveness to commands) or wakefulness (appearance of being awake with open eyes but without cognitive content). Plourde et al. measuring the action of physostigmine on the hypnotic effect of inhaled volatile anesthetics, conclude that physostigmine can, at least partially, antagonize the hypnotic effect of sevoflurane (subanesthetic concentrations) and that the resulting arousal is reflected by an increase in the amplitude of auditory steady-state response and, to a lesser extent, of the bispectral index. An interesting possibility is the antagonism of the anesthetic effect with physostigmine that results from potentiation of 40 Hz oscillations via increased muscarinic tone, whereas anesthetic-induced unconsciousness is associated with a reduction of gamma or 40 Hz oscillations in thalamocortical systems. These rhythms constitute background activity reflecting depolarization of thalamic and cortical neurons, a physiologic condition required for consciousness. In addition, Hill et al. demonstrated that physostigmine decreased the time for return of consciousness after halothane anesthesia.

These data, taken together, suggest not only that if reversal of the neuromuscular blockade occurs during anesthesia using cholinesterase inhibitors patients could be at risk of intraoperative awareness, as we recently underlined, but also that these drugs may promote an enhancement of implicit memory for any awareness event that occurs. It may occur above all during light levels of anesthesia, common during the final period of anesthesia. During this period, cholinesterase inhibitors are given by anesthetists to reverse neuromuscular block. In other words, patients may better recall memories of the awareness experienced intraoperatively.

It was also reported that inhibition of central nicotinic acetylcholine receptors contributes to secondary effects attributed to anesthesia such as impairment in memory and cognitive performance, whereas nicotinic acetylcholine receptors agonists improve memory. Other drugs used in anesthesia, as well as the neuromuscular blocking drugs atracurium and the atracurium and cisatracurium metabolite laudanosine, activate nicotinic acetylcholine receptors at concentrations comparable to those measured in the central nervous system during, and for several hours after, general anesthesia. Administration of these neuromuscular blocking drugs, resulting in laudanosine production, has been suggested to improve postoperative cognitive functions, with the clinical relevance that they could have a potentially therapeutic effect in patients with Parkinson’s disease. We ask if atracurium, cisatracurium, and their metabolite laudanosine should be included in the list of drugs acting at the cholinergic receptors and therefore potentially enhancing memory, with advantages and disadvantages mentioned above, and if these data merit, as do the anticholinergic agents, more detailed exploration by laboratory and clinical studies.

Vincenzo Fodale, M.D.,* Marco Tescone, M.D., Caterina Praticò, M.D. * University of Messina, Messina, Italy. vfodale@unime.it

References

12. Andoh T: Effects of general anesthetics on neuronal nicotinic acetylcholine receptors and their roles in the mechanism of anesthesia. Masui 2001; 50:1072–84
Is It the Validation or Invalidation of the Airway Management Algorithm?

To the Editor:—The authors must be congratulated for undertaking the study attempting to answer the question of protocol-based airway management in the event of unanticipated difficult intubation.1 However, this raises some serious questions about the content and conclusions of the study.

First, we are unclear as to how the investigators have concluded that their local protocol-based approach to airway management in the event of unanticipated difficult intubation after induction is efficacious. In an 18-month interval, 100 patients who were anticipated to be easy to intubate on preoperative work-up were subsequently found to be difficult to intubate. Sixteen percent of these patients suffered severe hypoxemia. Although the authors have not provided any data regarding the incidence of hypoxemia at induction among the true positive participants, it is unlikely that the incidence in that population could be as high as 16%. One patient suffered significant dental trauma and one ended up aspirating gastric contents. In addition, 89 patients were subjected to multiple attempts at direct laryngoscopy. The authors fail to acknowledge that these adverse events could very well have been the result of the sticking with the proposed airway algorithm. It appears that most of the patients suffered hypoxemia as a result of multiple attempts at laryngoscopy. Hypoxemia, as we understand, is a clear sign of ventilatory failure under these situations unless it is attributable to other causes. Failure to keep a substantial number of patients oxidized highlights the inefficiency of the proposed algorithm. Unless the study was designed to evaluate the efficacy of the Intubating Laryngeal Mask Airway™ (LMA North America, Inc., San Diego, CA) as a tool for rescue ventilation, the conclusion that 100 percent of the patients were successfully ventilated underestimates the significant problems at ventilation encountered by the anesthesiologists while following the algorithm.

We are also unclear on what basis the authors claim that the study has validated the local protocol-based approach to airway management. The study has neither the design nor the power to answer this question, as we do not know what would happen if the anesthesiologist were not restricted by the protocol to the use of direct laryngoscopy, gum elastic bougie, Intubating Laryngeal Mask Airway™, or the transtracheal jet ventilation. Whether anticipated or unanticipated, the approach to airway management in the event of failed intubation at induction depends on multiple factors. The result of preliminary laryngoscopy, the view of the glottis, the primary reason for intubation failure (is it the poor laryngoscopic view or the failure to pass the tube?), ease of ventilation with the mask, the muscle relaxant used, emergency or elective surgery, state of oxygenation of the patient, presence or absence of risk factors for aspiration, the condition of upper dentition, and, above all, the skill and expertise of the anesthesiologist all must be taken into account before defining the next step. A protocol-based approach like the one proposed by the investigators may limit anesthesiologists to applying individual problem-based solutions in the event of inadvertent difficult intubation. The end result: the patient with the poor dentition suffers dental trauma, the patient with full stomach may wind up aspirating gastric contents; failure of the Intubating Laryngeal Mask Airway™ regardless of the cause (morbid obesity/limited mouth opening) commits the anesthesia provider to expose the patient to the risk of transtracheal jet ventilation—albeit switching to simple a laryngeal mask airway or laryngeal tube might have solved that problem. A broad-based protocol that incorporates all the fundamental goals and objectives of airway management, e.g., the American Society of Anesthesiologists airway protocol, allowing for stepwise evaluation based interventions while taking into account factors specific to operator skill and experience, available resources, and patient continues to be the most prudent approach to management of inadvertent difficult intubation.5

Govind R. Rajan, M.D. Veterans Affairs Medical Center and Saint Louis University, St. Louis, Missouri. govind_r@hotmail.com

References

(Received for publication August 10, 2004.)

Unanticipated Difficult Airway: What about Emergency Cases?

To the Editor:—We read with great interest the recent report on unanticipated difficult airway in anesthetized patients by Combes et al.1 The article confirms that by strictly adhering to a simple predefined algorithm most problems occurring during management of an unexpected airway can be solved. This has already been proven in two other large prospective studies.2,3 Using the gum elastic bougie as the first choice in a “can ventilate” but “cannot intubate” situation is a well-established technique, especially in Great Britain, and, of course, is much cheaper than, for example, a fiberoptic bronchoscope.4

Anesthesiology 2004; 101:1484–5

© 2004 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.
CORRESPONDENCE

However, the study raises several questions. The algorithm was only applied in elective cases. It would be very informative whether this airway algorithm was also used in emergency situations (out of the study) and how they succeeded.

The authors did not mention the distribution of intubations across surgical disciplines in detail although it is well known that many difficulties occur in Ear, Nose and Throat departments.

The authors correctly pointed out that the results are not transposable to patients with an anticipated difficult airway. Nevertheless, it would be very interesting how they managed these scenarios and how they decided what is an anticipated difficult airway and consequently excluded them from the study.

Thomas Heidegger, M.D.,* Hans J. Gerig, M.D. † Cantonal Hospital St. Gallen, St. Gallen, Switzerland. thomas.heidegger@kssg.ch

References


(Accepted for publication September 1, 2004.)

Use of a Fogarty Catheter Sheath as an Endotracheal Tube Changer

To the Editor.—We recently encountered a case that required extubation strategy for difficult airway as recommended by American Society of Anesthesiologists task force.1 A 50-year-old lady underwent segmental mandibulectomy and radical neck dissection with deltopectoral flap for carcinoma parotid gland. At the end of surgery the oral endotracheal tube was left in place and she was shifted to the intensive care unit.

In the absence of either a jet stylet or commercially available tube changer that is "rigid to facilitate intubation and/or hollow to facilitate ventilation,"1 we thought of using a readily available tube changer. We were wary of using the previously described tube changers because of their lack of lumen to provide oxygen, lack of stiffness, or small

Support was provided solely from institutional and/or departmental sources.

Reference


(Accepted for publication September 1, 2004.)
To the Editor.—The NIM® electromyographic endotracheal tube (Medtronic Xomed, Jacksonville, FL) is a wire-reinforced endotracheal tube equipped with surface electrodes often used to monitor recurrent laryngeal nerve function during thyroid surgery. Recently, while preparing a new NIM® tube we noticed a kink midway along its shaft. The mechanism of this tube kink was not known but at least one other anesthesiologist in our department has experienced a similar problem with this tube. Closer examination of our tube revealed that the reinforcing metal coil had separated from the internal surface of the tube (fig. 1). To see how the coil had become dislodged we hooked the reinforcing wire to become dislodged during normal use of this tube. For instance, excessively bend the NIM® tube and to carefully inspect its lumen before each use. Clinicians are cautioned not to suctioning the trachea and advancing a fiberoptic instrument or airway obstruction. From our experience, it is possible for the reinforcing wire to become dislodged during normal use of this tube. For instance, a patient could bite on the tube separating the wire. Anesthesiologists should be aware of this possibility. Clinicians are cautioned not to excessively bend the NIM® tube and to carefully inspect its lumen before each use.

Sundara K. Rengasamy, M.D.,* Rafael A. Ortega, M.D. * Boston University Medical Center, Boston, Massachusetts, sundarakumaran.rengasamy@bmc.org

(Accepted for publication June 28, 2004.)

References


(accepted for publication June 28, 2004.)

Foreign Body in the Airway

This is in contrast with other reinforced tubes in which the reinforcing wire is embedded within the wall of the tube. Such a foreign body within the lumen of an endotracheal tube can potentially cause airway management problems, including difficulty suctioning the trachea and advancing a fiberoptic instrument or airway obstruction. From our experience, it is possible for the reinforcing wire to become dislodged during normal use of this tube. For instance, a patient could bite on the tube separating the wire. Anesthesiologists should be aware of this possibility. Clinicians are cautioned not to excessively bend the NIM® tube and to carefully inspect its lumen before each use.

Sundara K. Rengasamy, M.D.,* Rafael A. Ortega, M.D. * Boston University Medical Center, Boston, Massachusetts, sundarakumaran.rengasamy@bmc.org

(accepted for publication June 28, 2004.)

Support was provided solely from institutional and/or departmental sources.
To the Editor:—Linezolid is a valuable drug that is finding increased use in the hospitalized surgical patient for the treatment of infections resulting from resistant, gram-positive organisms. Along with its known efficacy as an antibacterial agent, linezolid is a mild, reversible monoamine oxidase inhibitor.1 Reviews on the subject of its monoamine oxidase inhibitor-like profile have expressed caution about the use of linezolid in the clinical setting, specifically when combined with sympathomimetic agents,2 but there have been few, if any, reported clinical examples of a significant interaction. Recently, however, we observed unexpected intraoperative hemodynamic lability, as well as severe intermittent hypertension, in a psychiatric patient maintained on bupropion who was subsequently placed on linezolid for treatment of an infected vascular graft. We raise the concern that we have seen one of the first examples in the perioperative setting of a potentially dangerous interaction between linezolid and bupropion.

The patient was a 57-yr-old male status post axillary-femoral bypass graft who presented to the emergency room with evidence of a graft infection and was admitted for antibiotics. After a trial of several antibiotics, he was placed on linezolid for treatment of resistant, gram-positive organisms. As an outpatient, he had been stably maintained on bupropion for long-standing depression; this drug was continued throughout his hospital course. After about 24 h of linezolid therapy, the patient was taken to the operating room for graft removal, where he underwent a propofol/succinylcholine induction with standard doses and a maintenance anesthetic of 1.5% isoflurane and fentanyl 250 μg. His intraoperative course was notable for several episodes of severe hypertension (as high as 260/145 mmHg), despite an otherwise stable anesthetic. The unexpected hemodynamic lability was severe enough to result in an unplanned admission to the intensive care unit, where the patient had an unremarkable postoperative course.

The possibility of a significant drug interaction between linezolid and bupropion was suspected immediately and is supported by a careful analysis of the underlying pharmacologic mechanisms. Bupropion is an antidepressant that, in concert with its primary metabolite hydroxybupropion, acts as a norepinephrine reuptake inhibitor as well as a mild dopamine reuptake inhibitor.3 Both norepinephrine and dopamine are monoamine compounds metabolized by monoamine oxidase. The use of bupropion with older, more traditional monoamine oxidase inhibitor drugs (such as phenelzine and tranylcypromine) has long been contraindicated in standard psychiatric practice because of the risk of a hypertensive crisis.3 The older monoamine oxidase inhibitors do differ from linezolid in that they are strong, irreversible inhibitors of monoamine oxidase. As linezolid is a weak, reversible monoamine oxidase inhibitor, it had not been appreciated that coadministration with bupropion might cause a similar hypertensive state.

However, linezolid clearly resembles the stronger monoamine oxidase inhibitors in its capacity to interact adversely with certain drugs. Combining the older monoamine oxidase inhibitors with serotonergically active drugs, such as selective serotonin inhibitors,4,5 meperidine,6 and dextromethorphan,7 may lead to a severe central serotonin syndrome.8 Similarly, linezolid has been implicated in producing a central serotonin syndrome when combined with either paroxetine9 or citalopram10 (both selective serotonin reuptake inhibitors). Furthermore, it is known that sympathomimetic agents, when administered in combination with the traditional monoamine oxidase inhibitors, may produce severe hypertensive events.11 Again, linezolid mimics the interaction profile of the stronger monoamine oxidase inhibitors by producing statistically significant increases in blood pressure when
combined with pseudoephedrine and phenylpropanolamine.\textsuperscript{12} Based on this information, it is not surprising that linezolid acts like a more traditional monoamine oxidase inhibitor when combined with bupro- pion, especially in the context of the well-known physiologic stimulation and adrenergic stress of surgery.\textsuperscript{13}

It is hoped that this letter will alert clinicians to the monoamine oxidase inhibitor-like profile of linezolid and prevent the combination of linezolid with agents that enhance the function of any of the monoamines (serotonin, norepinephrine, epinephrine, and dopamine).

Catherine Marcucci, M.D.,* Neil B. Sandson, M.D., Joyce A. Dunlap, C.R.N.A. * University of Maryland Medical System and Baltimore Veterans Administration Hospital. sandson.marcucci@comcast.net

References


(Accepted for publication July 14, 2004.)