Estimation of the Plasma Effect Site Equilibration Rate Constant (k_{eq}) of Propofol in Children Using the Time to Peak Effect

Comparison with Adults

Hernán R. Muñoz, M.D., M.Sc.,* Luis I. Cortínez, M.D.,† Mauricio E. Ibacache, M.D.,‡ Fernando R. Altermatt, M.D.†

Background: Targeting the effect site concentration may offer advantages over the traditional forms of administering intravenous anesthetics. Because the lack of the plasma effect site equilibration rate constant (k_{eq}) for propofol in children precludes the use of this technique in this population, the authors estimated the value of k_{eq} for propofol in children using the time to peak effect (t_{peak}) method and two pharmacokinetic models of propofol for children.

Methods: The t_{peak} after a submaximal bolus dose of propofol was measured by means of the Alaris A-Line auditory evoked potential monitor (Danmeter A/S, Odense, Denmark) in 25 children (aged 3–11 yr) and 25 adults (aged 35–48 yr). Using t_{peak} and two previously validated sets of pharmacokinetic parameters for propofol in children, Kataria’s and that used in the Paedfusor (Graseby Medical Ltd., Hertfordshire, United Kingdom), the k_{eq} was estimated according to a method recently published.

Results: The mean t_{peak} was 80 ± 20 s in adults and 132 ± 49 s in children (P < 0.001). The median k_{eq} in children was 0.41 min⁻¹ with the model of Kataria and 0.91 min⁻¹ with the Paedfusor model (P < 0.001). The corresponding t_{1/2} k_{eq} values, in minutes, were 1.7 and 0.8, respectively (P < 0.01).

Conclusions: Children have a significantly longer t_{peak} of propofol than adults. The values of k_{eq} of propofol calculated for children depend on the pharmacokinetic model used and also can only be used with the appropriate set of pharmacokinetic parameters to target effect site in this population.

PHARMACOKINETIC studies and the development of computer-controlled infusion devices have lead to new ways of administering intravenous drugs. Target-controlled infusion allows achieving and maintaining predetermined plasma concentrations of different drugs whose pharmacokinetic parameters have been previously estimated. Although this combination of pharmacokinetics and computer technology is with no doubt a significant advance for delivering intravenous drugs, there are still some problems and limitations regarding target-controlled infusion systems.1 One of them refers to the fact that it is the effect site or “biophase” concentration, not the plasma concentration, that best correlates with drug effect. Therefore, targeting the plasma concentration results in a delayed effect with respect to plasma concentration in non-steady state conditions,2,3 and the effect site seems to be a more logical target when rapid variations in the level of effect are needed as occurs in clinical anesthesia.1 Targeting the effect site, however, requires specific pharmacokinetic parameters of the biophase such as the plasma effect site equilibration rate constant (k_{eq}), which describes the removal of the drugs from the effect site. The k_{eq} can be incorporated into the pharmacokinetic model to calculate the dosing scheme to target effect site instead of plasma; however, this parameter has not been defined for a number of drugs. For example, propofol is the only drug with commercially available target-controlled infusion devices for adults (Diprifusor; Graseby Medical Ltd., Hertfordshire, United Kingdom) and children (Paedfusor; Graseby Medical Ltd.), and although the k_{eq} of propofol has been determined for the adult population,4–6 we are not aware of any report of this parameter in children. Moreover, and in addition to potential pharmacodynamic differences between these two populations, because the k_{eq} is specific to a particular vector of pharmacokinetic parameters, it is not correct to extrapolate a value derived from an adult model into a pediatric pharmacokinetic model of propofol. These facts preclude the more rational approach of targeting effect site when infusing propofol in this population.

Because measuring effect site concentration is not possible in clinics, a surrogate measurement, such as the drug effect within the central nervous system, is needed. Electroencephalographic-derived indices, such as those of the Bispectral Index and auditory evoked potential (AEP) monitors, display a continuous measurement of the hypnotic effect of drugs such as propofol, and after the administration of a bolus dose that produces a submaximal effect, the peak effect and the time from injection to peak effect (t_{peak}),7 can be identified. When there is no drug initially in the body, the magnitude of the maximum effect depends on the dose; however, t_{peak} occurs at the same time regardless of dose.7 Minto et al.8 have shown that t_{peak} is a model-independent pharmacodynamic parameter that can be used with the appropriate pharmacokinetic parameter set to calculate the value of k_{eq} that accurately predicts t_{peak}. Provided that we have an adequate measurement tool for the drug effect, the t_{peak} method may offer advantages over more traditional methods to estimate k_{eq}. These include the
determination of a single point (the maximum effect) instead of the complete course of drug effect, the fact that no assumptions are needed on the degree of equilibration between plasma and biophase after an infusion or step modifications of plasma concentrations, and the fact that the \(t_{peak} \) method requires a reduced number of mathematical iterations that can lead to increasing inaccuracies.\(^4\)\(^{-6}\) Schnider et al.\(^6\) found that the \(t_{peak} \) of propofol tends to increase with age in adults. Although \(a \ priori \) it is not possible to extrapolate the \(t_{peak} \) of propofol obtained from adults to children, we hypothesize that this value in children may be smaller. Therefore, the objective of this study was to determine the \(t_{peak} \) of propofol in children and compare this value with that of adults. A derived and equally important objective is to calculate the \(k_{e0} \) of propofol in children with two pharmacokinetic models of propofol for this population using the \(t_{peak} \) method.

Materials and Methods

After institutional ethics committee approval (School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile) and obtaining informed consent, 25 adult patients aged 35–48 yr and 25 children aged 3–11 yr were studied. All patients were unpremedicated, had American Society of Anesthesiologists physical status I, and were scheduled to undergo elective surgery during general anesthesia. Exclusion criteria included a weight greater than 120% of ideal, long- or short-term (within the previous 48 h) intake of any sedative and analgesic drug, and any known adverse effect to the study drugs. In the operating room, after routine monitoring, three electrodes (A-Line electrodes; Medicotest A/S, Oel-stykke, Denmark) were positioned at the mid forehead (+), the left forehead (reference), and the left mastoid (–) in all patients. A bilateral click stimulus of 70 db and 2 ms duration was applied by means of headphones, and the midlatency AEPs elicited were processed continuously using the Alaris A-Line AEP monitor, version 1.4 (Danmeter A/S, Odense, Denmark). The A-Line AEP monitor uses an Auto Regressive method with exogenous input (ARX) model to process the AEPs and displays the A-Line ARX-index (AAI), a dimensionless number from 100 (fully awake) to 0 (conceivably a flat electroencephalography). The index was obtained as “normal AAI,” which displays the on-line measured index at a rate of 1 Hz. Because the monitor initially needs a period of time to process the AEPs and give the first AAI value, the subsequent values are shown with a time delay of approximately 6 s. When the impedance of the electrodes was less than 5 kΩ and there were no warnings of poor quality signal on the screen of the monitor, a bolus dose of propofol (1%; Fresenius Kabi, Hamburg, Germany) producing a submaximal effect (i.e., the minimum AAI value generated by the A-Line AEP monitor was > 0) was injected manually as fast as possible (always in less than 5 s) and followed by a flush of saline. Because initially the “useful” dose of propofol had to be determined, the first patients in both groups received different doses on a weight basis. Patients who did not lose the eyelash reflex were excluded from the study because their recording of AAI values did not always allow the detection of an evident minimum. Besides the confirmation of the presence or absence of the eyelash reflex, no other stimulation was applied (i.e., noninvasive arterial pressure) to patients. When a minimum AAI value was obtained and partial recovery from propofol was evident as suggested by increasing AAI values, the study was finished and anesthesia continued according to the attending anesthesiologist.

The AAI values recorded by the AEP monitor at a frequency of 1 Hz were imported into an Excel (Microsoft Corporation, Redmond, WA) spreadsheet for off-line determination of the time of peak effect (\(t_{peak} \) time from the beginning of injection of propofol until the minimum AAI value). In the few cases where a minimum AAI value remained constant for a few seconds (usually for 5–6 s), the time until the first lowest AAI value was considered the \(t_{peak} \). Because the AAI value is displayed with a 6-s delay, for subsequent analysis, we subtracted 6 s from the \(t_{peak} \) determined off-line. Because at \(t_{peak} \) the maximum effect site concentration (\(C_e \)) of propofol occurs and equals that of plasma (\(C_p \)), after a bolus, we can calculate these concentrations (\(\mu g/\mathrm{ml} \)) with the dose (mg) and the Unit Disposition Function of the effect site at \(t_{peak} (C_e(t_{peak})) \) with the formula

\[
C_p(t_{peak}) = \text{Dose (mg)} \times \sum_{i=1}^{n} A_i e^{-\lambda t_{peak}} = C_e(t_{peak}).
\]

where A and \(\lambda \) are pharmacokinetic parameters. Then, using \(C_e(t_{peak}) \) the value of \(k_{e0} \) was calculated with the equation

\[
C_e(t_{peak}) = \text{Dose (mg)} \times \sum_{i=1}^{n} \frac{k_{e0} A_i}{k_{e0} - \lambda_i} \left(e^{-\lambda t_{peak}} - k_{e0} e^{-k_{e0}t_{peak}} \right).
\]

This equation was solved for \(k_{e0} \) for each patient with the Solver function of Excel using the pharmacokinetic parameters for propofol determined by Schnider et al.\(^9\) for adults and those determined by Kataria et al.\(^10\) for children. In children, \(k_{e0} \) was also calculated with the pharmacokinetic model used in the Paedfusor. The constants of this model are \(k_{12} = 0.114, k_{13} = 0.0419, k_{21} = 0.055, k_{31} = 0.0033 \). Central compartment volume and k10 vary with age and weight, but for children aged 12 yr or younger they are \(V_1 = 458.4 \, \text{ml/kg} \) and \(k_{10} = 0.114 \).
Finally, as a simple way to validate the model, in terms that the population k_{e0} determined for each group is capable to predict a t_{peak} similar to the measured t_{peak}, the median k_{e0} determined from all children and all adults was used to calculate, with the corresponding pharmacokinetic parameters, the “predicted” t_{peak} for each patient.

Statistical analysis was with the Kolmogorov–Smirnov test as a test of normality. This was followed by paired and unpaired Student t tests, and Wilcoxon and Mann–Whitney tests for variables with and without normal distribution, respectively. A P value less than 0.05 was considered significant. Values are presented as mean ± SD or median (range).

Results

Demographic data for both groups, the dose of propofol, and AAI values are shown in table 1. There was a wide variability in the baseline AAI values in both children and adults. Moreover, whereas there was no difference between children and adults in the AAI values measured awake, after propofol, adults reached a lower AAI value compared with children (fig. 1 and table 1).

The t_{peak} was 80 ± 20 s (43–108 s) in adults and 132 ± 49 s (55–209 s) in children ($P < 0.001$; fig. 2). In both groups, there was a non-statistically significant tendency to an increase of t_{peak} with age. In all patients, it was possible to determine with equation 2 the k_{e0} that exactly matched the measured t_{peak} (minus the 6-s delay) (fig. 3). The Kolmogorov–Smirnov test detected that the k_{e0} and $t_{1/2}$ k_{e0} did not have normal distribution; consequently, they were analyzed with Mann–Whitney and Wilcoxon tests. The calculated median k_{e0} was 0.56 min$^{-1}$ (0.30–2.00 min$^{-1}$) in adults. In children, the median k_{e0} was 0.41 min$^{-1}$ (0.12–1.85 min$^{-1}$) using the model of Kataria and 0.91 min$^{-1}$ (0.40–3.34 min$^{-1}$) with the Paedfusor parameters ($P < 0.001$, Wilcoxon test). These k_{e0} values led to a median $t_{1/2}$ k_{e0} value of 1.24 min (0.35–2.33 min) in adults and 1.7 min (0.4–5.9 min) and 0.8 min (0.2–1.7 min) in children with the Kataria and Paedfusor models, respectively ($P < 0.001$, Wilcoxon test).

When the k_{e0} and $t_{1/2}$ k_{e0} from adults were compared with those from children, a statistically significant difference was found only with those parameters determined with the Paedfusor model ($P < 0.01$, Mann–Whitney test).

The “predicted” t_{peak} in adults using a k_{e0} of 0.56 min$^{-1}$ was 82 ± 2 s (77–85 s) and was not significantly different from the measured t_{peak} with the paired Student t test. (fig. 4). In children, using a k_{e0} of 0.41 min$^{-1}$ and the pharmacokinetic model of Kataria, the “predicted” t_{peak} was 131 ± 25 s (94–184 s). In this same age

Table 1. General Data

<table>
<thead>
<tr>
<th></th>
<th>Adults (n = 25)</th>
<th>Children (n = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yr</td>
<td>41 ± 4</td>
<td>6.6 ± 2.3*</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>68 ± 13</td>
<td>29 ± 12*</td>
</tr>
<tr>
<td>Height, cm</td>
<td>165 ± 10</td>
<td>124 ± 16*</td>
</tr>
<tr>
<td>Propofol, mg/kg</td>
<td>1.6 ± 0.1</td>
<td>2.7 ± 0.3*</td>
</tr>
<tr>
<td>Baseline AAI value</td>
<td>68 ± 16</td>
<td>72 ± 17</td>
</tr>
<tr>
<td>Minimum AAI value after propofol</td>
<td>15 ± 6</td>
<td>26 ± 11*</td>
</tr>
</tbody>
</table>

*P < 0.05 between groups.

AAI = A-Line ARX index.

$k_{10} = 0.1527 \times \text{weight}^{-0.3}$. Finally, as a simple way to validate the model, in terms that the population k_{e0} determined for each group is capable to predict a t_{peak} similar to the measured t_{peak}, the median k_{e0} determined from all children and all adults was used to calculate, with the corresponding pharmacokinetic parameters, the “predicted” t_{peak} for each patient.

Statistical analysis was with the Kolmogorov–Smirnov test as a test of normality. This was followed by paired and unpaired Student t tests, and Wilcoxon and Mann–Whitney tests for variables with and without normal distribution, respectively. A P value less than 0.05 was considered significant. Values are presented as mean ± SD or median (range).

Fig. 1. Evolution of the A-Line monitor index (AAI) values during the study in the 25 adults (top) and 25 children (bottom). The arrows indicate the injection of propofol.
group, using a k_{e0} of 0.91 min$^{-1}$ and the Paedfusor pharmacokinetic model, the "predicted" t_{peak} was 128 s (125–140 s). These were not significantly different from the measured t_{peak} with the paired Student t test (fig. 4).

Discussion

The main finding of this study is that the peak effect of propofol in children occurs significantly later as compared with adults. Expectedly, the calculated values of k_{e0} and $t_{1/2} k_{e0}$ depend on the pharmacokinetic model used to derive these parameters.

Propofol is widely used for intravenous anesthesia; however, we are not aware of any study determining the k_{e0} of propofol in children. An accurate determination of a given drug’s k_{e0} is useful for targeting the effect site instead of the plasma concentration during computer-controlled drug administration, for designing and interpreting clinical pharmacologic research, and for simulations of the time course of a drug effect.

To calculate the k_{e0}, the t_{peak} method was used as proposed by Minto et al.8 The t_{peak} is a pharmacokinetic model-independent parameter that can be directly observed after a bolus dose of a drug, provided that the
drug is given for the first time, that a submaximal response is elicited, and that its time course can be measured accurately.3,7,8 In turn, this tpeak can be mathematically related to any adequate pharmacokinetic model to calculate the corresponding ke0 that will result in a maximal effect site concentration at the moment of tpeak.3,6,8 The mean t peak of 80 s found in our study for adults is shorter than the t peak of 96 s observed by Schnider et al.6; however, we injected propofol in less than 5 s, whereas in the study of Schnider, the injection lasted 18 s (range, 13–24 s), and this might have lead to different tpeaks. Using the pharmacokinetic model for propofol of Schnider et al.,9 we found a median value for the ke0 of 0.56 min H11002 1 a n dat1/2 ke0 of 1.2 min in adults. This t1/2 ke0 calculated in our study is 20% smaller than the 1.5 min reported by Schnider et al.6 Although this difference (and that in ke0) can be first accounted for by the differences found in t peak values, it might also be secondary to the use of different monitors of drug effect. In addition, anthropometric differences in the populations under study leading to different pharmacokinetic variables and therefore to different ke0 values cannot be ruled out. The t1/2 ke0 of propofol reported in this study and that of Schneider are smaller than t1/2 ke0s calculated in other studies and that go up to 4.0 min.4,5 In this last case, however, these differences could be secondary to the use of different pharmacokinetic models for propofol because the value of ke0 is critically dependent on the pharmacokinetic model used.

In the case of children aged 3–11 yr, we found a t peak of 132 s, which is significantly larger than that of adults. Therefore, our initial hypothesis of a shorter or faster tpeak in children than adults, which would agree with the tendency to an increase of tpeak with age in adults6 is not supported by our findings. The t peak or time of maximal effect site concentration of a drug after a bolus depends on two simultaneously occurring processes: One is the decreasing plasma concentration, and the other is the increasing effect site concentration. The faster the decrease of plasma concentration is, the sooner tpeak occurs. As shown in figures 4 and 5, the pharmacokinetic models of propofol of both Kataria and the Paedfusor in children predict a slower decrease of plasma concentration compared with the model of Schneider in adults. This

Fig. 4. Time evolution of plasma (Cp) and effect site (Ce) concentration of propofol of the same woman and girl of previous figures. The left graph corresponds to the adult and her estimated Cp and Ce with the model of Schneider and her own plasma effect site equilibrium rate constant (ke0) (0.502 min H11546 1)(Cp with continuous line). The dotted line corresponds to Ce calculated with the same model and the median ke0 obtained from the adult group (0.56 min H11546 1). The center and right graphs correspond to the Cp and Ce of the girl calculated with the parameters of Kataria and Paedfusor. Cps with dotted lines were obtained with the individual ke0s derived from the models (0.23 min H11546 1 and 0.66 min H11546 1 with the parameters of Kataria and Paedfusor, respectively). Cps with dashed lines were calculated using the population ke0s (0.41 min H11546 1 and 0.91 min H11546 1, respectively).

Fig. 5. Unit disposition function (UDF) of the plasma versus time determined with the model of Schneider in the youngest and eldest adult of our study (left) and in a 3-yr-old child and an 11-yr-old child according to the model of Kataria (center) and the Paedfusor (Graseby Medical Ltd., Hertfordshire, United Kingdom) parameters (right). The variability is much larger in children, particularly using the Paedfusor model. This variability in the rate of plasma concentration decay may explain part of the variability of time to peak effect in children.
could be an explanation for a slower tpeak in this age group. The larger variability of tpeak in children could be also secondary to the much larger variability in pharmacokinetic parameters within children aged 3–11 yr compared with adults aged 35–48 yr, as shown in figure 5.

When the tpeak found was used to calculate the ke0, the results were significantly different depending on the pharmacokinetic model used. With the model of Kataria et al., the ke0 was 0.41 min⁻¹, resulting in a t1/2 ke0 of 1.7 min that supports a slower tpeak in children than in adults, whereas with the Paedfusor parameters, the ke0 was 0.91 min⁻¹, and the t1/2 ke0 was 0.8 min. These results emphasize two facts: One is that the ke0 value is critically determined by the particular set of pharmacokinetic parameters used to calculate it; therefore, ke0 cannot be used interchangeably with different models. The other is that despite a shorter t1/2 ke0, as occurs with the value determined by the Paedfusor, compared with that from adults, tpeak can be longer secondary to a much larger variability in pharmacokinetic parameters within children aged 3–11 yr compared with adults aged 35–48 yr, as shown in figure 5.

To validate the estimates of ke0, we compared the mean measured tpeak with the mean predicted tpeak in each population using the median ke0. The observed time of peak effect in adults (80 s) agrees almost exactly with the predicted tpeak of 82 s using the pharmacokinetics of Schnider et al. and a ke0 of 0.56 min⁻¹. In children, the predicted tpeak of 131 s using the pharmacokinetics reported by Kataria et al. and a ke0 of 0.41 min⁻¹ and the predicted tpeak of 128 s with the Paedfusor parameters and a ke0 of 0.91 min⁻¹ also match almost exactly the observed value of 132 s. This good agreement between mean measured and predicted tpeak suggests that the incorporation of the appropriate ke0 calculated in this study to the pharmacokinetics of Kataria and the Paedfusor may result in adequate appropriateness of ke0 calculated in this study to the pharmacokinetics of Kataria and the Paedfusor for propofol in children can be used with caution and the corresponding models to target effect site concentration of propofol in children. However, these parameters must be further validated before their widespread use in clinical anesthesia.

A criticism of our methodology might be related to the specific electroencephalographic monitor used. The Alaris AEP monitor (version 1.4) used in our study delivers a dimensionless number (AAI value) derived from the processing of the midlatency AEPs and might be regarded as very different from the electroencephalographic-derived measures in several aspects. While Alaris AEP monitor must be validated in children, the similarity of the tpeak in our study with that obtained by Schnider et al. suggests that both monitors are measuring, at least in adults, a similar underlying process that is modified by propofol. The baseline AAI values were similar in children and adults, whereas the minimum value was significantly higher in children. Although figure 5 shows that both pediatric models for propofol predict a lower peak effect site concentration than in adults, the pharmacokinetic difference may explain different minimum AAI values, pharmacodynamic differences cannot be ruled out.

As previously mentioned, at least theoretically, the effect site is a more logical target than plasma. This reduces the delay to obtain a given drug effect and possibly also its variability, which occurs when the target is plasma concentration. Because targeting the effect site is initially accompanied by a high plasma concentration or “overshoot,” the possibility that this might lead to more incidence of adverse effects (e.g., hypotension in the case of propofol) is a potential disadvantage of this technique. However, controlled studies with propofol have not shown more adverse effects when targeting an effect site concentration instead of plasma.

In conclusion, we have measured the time to peak effect of propofol in children and adults. Although this time is significantly longer in children, the finally calculated ke0 is particular to the model used to derive this parameter. The ke0s obtained from the models of Kataria and the Paedfusor for propofol in children can be used with caution and the corresponding models to target effect site concentration of propofol in children. However, these parameters must be further validated before their widespread use in clinical anesthesia.