To the Editor:—We read with interest the article by Chandra et al. in which the authors address the cost-effectiveness of simulation-based teaching of procedural skills. 1 The authors compared an inexpensive low-fidelity simulator to a relatively expensive high-fidelity simulator for learning a complex psychomotor skill: Fiberoptic orotracheal intubation. They found that the high-fidelity simulator had no additional role and value of modern anesthesia practice.

Although we had a serious discussion as to whether to suggest a “one strike, you’re out” policy for anesthesia practitioners, we chose to suggest an individualized approach. It should be noted that asking a trained nurse or physician to find another specialty of medicine in which to practice is hardly draconian, and we find it difficult to assert that individuals have some form of right to return to the scene of the crime. We note that “out” could easily mean out of clinical medicine entirely, but even this scenario allows for alternative careers. However, we are also acutely aware of individuals who were treated for substance abuse who have been successfully practicing anesthesiology for 20 or more years without a relapse. Unfortunately, these cases are rare.

The suggestion made by Berge et al. is a simple solution without ambiguity, but each case of addiction and recovery has its own narrative that we believe merits consideration. We applaud the assertion made by Dr. Katz that if, as a society, we are going to adopt a “one strike, you’re out” policy, it should be based on evidence. However, we add with some resignation that the lack of appropriate evidence does not diminish the imperative to make decisions when confronted with an addicted colleague.

Ethan O. Bryson, M.D., Jeffrey H. Silverstein, M.D. Mount Sinai School of Medicine, New York, New York. ethan.bryson@mountsinai.org

References

2. Berge KH, Seppala MD, Lanier WL. The anesthesiology community’s approach to opioid and anesthetic-abusing personnel: Time to change course. Anesthesiology 2008; 109:762–4

(Accepted for publication January 27, 2009.)

Looking Beyond Model Fidelity

To the Editor:—We read with interest the article by Chandra et al. in which the authors address the cost-effectiveness of simulation-based training of procedural skills. 1 The authors compared an inexpensive low-fidelity simulator to a relatively expensive high-fidelity simulator for learning a complex psychomotor skill: Fiberoptic orotracheal intubation. They found that the high-fidelity simulator had no additional educational benefit.

These findings are consistent with the results of other research that has found low-fidelity models to be as effective as high-fidelity models.

Ethan O. Bryson, M.D., Jeffrey H. Silverstein, M.D. Mount Sinai School of Medicine, New York, New York. ethan.bryson@mountsinai.org

References

2. Berge KH, Seppala MD, Lanier WL. The anesthesiology community’s approach to opioid and anesthetic-abusing personnel: Time to change course. Anesthesiology 2008; 109:762–4

(Accepted for publication January 27, 2009.)
in early skill acquisition2,3 although there is some evidence that high-fidelity models may have an advantage later in the learning curve supporting a graduated approach through models of increasing fidelity.4 However, we would like to suggest an alternative factor that affects the analysis of Chandra’s findings. In addition to differences in fidelity, the models used can also be differentiated according to the part task training theory.5

Part task training is defined as the deconstruction of multicomponent tasks into several single-component tasks. When each skill is learned separately, the single-task format allows a more rapid development of automaticity, reducing processing demands during subsequent integration into the performance of the whole procedure.6 Fiberoptic orotracheal intubation is a complex psychomotor task which requires the association of two component skills: The manipulation of the fiberoptic bronchoscope and the appreciation of the endoscopic view of the upper airway anatomy.

The AccuTouch Flexible Bronchoscopy Simulator (Immersion Medical, Gaithersburg, MD) can be considered a full task trainer model, whereas the “choose-the-hole” model can be classified as a single task trainer dedicated to learn specifically the manipulation of the bronchoscope. The other component skill of identifying the endoscopic appearance of the airway anatomy can be achieved through other simulators such as the virtual fiberoptic intubation part task trainer. The virtual fiberoptic intubation software (Institut de Recherche contre les Cancers de l’Appareil Digestif, Strasbourg, France) is a free screen-based simulator that focuses on learning normal and altered endoscopic airway anatomy away from the fiberoptic bronchoscope.7 Using only the computer’s mouse or keyboard, this virtual progression helps the learner to mentally integrate the schema of the correct airway route. The difference between the groups in Chandra’s study is not only one of fidelity, but also the difference between a full-task and a part-task simulation. It is interesting that there was no difference between the groups, and we can only speculate whether there would have been a difference if the part-task group had in addition used another part-task trainer such as the virtual fiberoptic intubation part task trainer to enable deliberate practice of both component skills.

We suspect that each type of simulator has a specific role. Part task trainers may be used for learning each component of a complex task, whereas full task trainers may be used to integrate those skills before working in the clinical setting. Given that Chandra \textit{et al.} found a single part task trainer to be equivalent to a full task trainer, we hypothesize that the use of complementary single task trainers has the potential to be more effective than a full task trainer in early skill acquisition for fiberoptic orotracheal intubation.

\textbf{Sylvain Boet, M.D.,* Mathew D. Bould, M.B., Ch.B., M.R.C.P., F.R.C.A., Pierre A. Diemunsch, M.D., Ph.D.* Hôpital de Hautepierre, University of Strasbourg, Strasbourg, France. sylvainboet@free.fr}

\textbf{References}

(Accepted for publication March 9, 2009.)

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{A Near Miss: A Nitrous Oxide-Carbon Dioxide Mix-up Despite Current Safety Standards}
\end{figure}

\textbf{To the Editor.—}This case summary reports the inadvertent connection of a nitrous oxide hose to a carbon dioxide wall outlet and subsequent administration of high levels of carbon dioxide gas to a patient during anesthesia. The possibility of such a misconception was unexpected, as it was assumed that the safety-keyed connection system would not allow such a coupling. Therefore, we consider it important to warn others of this occurrence.

Briefly, a healthy 324 old male presented for extracorporeal shockwave lithotripsy. The case was scheduled in a “procedure room.” Because of the small size of this room there is no boom dedicated to the delivery of anesthesia gas and electricity, as there is in the standard operating rooms. Medical gas hoses from the Draeger Narkomed 2B anesthesia machine (Draeger Medical, Inc., Telford, PA) have to be connected to gas outlets on the wall. This is the only operating room at our institution with such a configuration. The gas outlets (Connect2 Quick-Connect Medical Gas Outlets) and hose connectors (Ohmeda-style male hose adapters) were manufactured by Allied Healthcare Products, Inc., St. Louis, MO.

On the morning of surgery, a CA-1 anesthesia resident performed the daily equipment check but did not check the nitrous oxide line up to the wall outlet. After premedication the patient was transported to the operating room. He received 100 mg of lidocaine with 30 mg of propofol after preoxygenation. Nitrous oxide and oxygen flows were turned to 4 l each, and an inhalational induction was planned with sevoflurane. The patient continued breathing for 2 to 3 min without any change in consciousness; the induction was taking longer than anticipated. Upon checking the anesthesia machine, it was noticed that there was no nitrous oxide gas flow and the nitrous oxide hose was disconnected from the wall. The lithotripsy machine technician was standing nearby and was asked to attach the nitrous oxide hose to the wall outlet. After connection, the pipeline pressure gauge rose and there was return of flow through the nitrous oxide flow meter. Soon, the patient started to noisily hyperventilate, exchanging very large tidal volumes (> 1,000 ml). The capnograph audibly alarmed, showing an end-tidal carbon dioxide of 105 mmHg. The gas supply source was checked, and it was found that the nitrous oxide gas line was connected to the carbon dioxide gas wall outlet. As this particular room had no nitrous oxide wall outlets, the nitrous oxide hose was disconnected from the carbon dioxide wall outlet to allow use of the E cylinder of nitrous oxide (otherwise, the pressure differential would favor the higher-pressure wall source). The E cylinder was then employed for induction and maintenance of the patient. After the patient was

\textbf{Support} was provided solely from institutional and/or departmental sources.

Anesthesiology 2009; 110:1429–31 Copyright © 2009, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.