Tracheal Intubation Performed with GlideScope® Video Laryngoscope and Direct Laryngoscopy in Neonates and Infants

To the Editor: Fiadjoe et al.¹ should be applauded for their efforts in comparing the performance of the GlideScope Cobalt® video laryngoscope (GCV) (Verathon Medical, Bothell, WA)‡ with the Miller laryngoscope (Heine, Dover, NH) for tracheal intubation in neonates and infants with a normal airway. Quite rightly, the primary outcomes of this study are intubation time and success rate with the two devices. However, there are several issues of the study that need to be clarified.

The authors did not indicate how many of the neonates aged younger than 1 month and the infants aged 1–12 months were included in each group. Is a size 1 Miller blade the best selection for all patients in the direct laryngoscopy group? In our experience, a size 0 Miller blade is more useful than a size 1 Miller blade in the neonates. In the GCV group, a size 2 blade of the GCV was selected. However, an important issue ignored by the authors is bodyweight range of patients. The recommended blade sizes are based on bodyweight of patients. The recommended blade sizes are size 0 for patients weighing less than 1.5 kg, size 1 for patients weighing 1.5–3.6 kg, size 2 for patients weighing 1.8–10 kg, size 3 for patients weighing 10 kg, or adults, and size 4 for patients weighing 40 kg, or morbidly obese patients. Because each blade covers a wide bodyweight range and the infant’s airway is typically 3 or 4 mm in diameter, the laryngoscopic view of the GCV may vary with the size of the blade.

The authors compared the percentage of glottic opening score obtained by the two devices, and demonstrated that the GCV yielded a better laryngoscopic view than the Miller laryngoscope. We were also very interested in the use of maneuvers to aid laryngoscopy in this study, especially for the use of optimum external laryngeal manipulation. It is generally recommend that optimum external laryngeal manipulation should be used with a poor laryngoscopic view in order to improve visualization with direct laryngoscopy. Benumof and Cooper⁴ demonstrated that optimum external laryngeal manipulation may improve the laryngoscopic view by at least one whole grade in adults. Similarly, this maneuver has proved effective for direct laryngoscopy in pediatric patients.⁵ In the clinical studies comparing performance of GlideScope® video laryngoscope with direct laryngoscope for tracheal intubation in pediatric patients with normal and difficult airways,⁶,⁷ optimum external laryngeal manipulation has also been shown to provide improved laryngoscopic view. In methods, we do not feel that the authors clearly described if they had adopted an optimal-best attempt at laryngoscopy when evaluating the best views obtained with the two laryngoscopes.

Fu-Shan Xue, M.D.,* Yi Cheng, M.D., Qiang Wang, M.D. *Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China. fruitxue@yahoo.com.cn

References
7. Armstrong J, John J, Karsli C: A comparison between the


Michael Aziz, M.D.,* Angsar Bram brink, M.D., Ph.D.
*Oregon Health & Science University, Portland, Oregon. azizm@ohsu.edu

References
1. Aziz MF, Dillman D, Fu R, Brambrink AM: Comparative effectiveness of the C-MAC video laryngoscope versus direct laryngoscopy in the setting of the predicted difficult airway. ANESTHESIOLOGY 2012; 116:629–36

(Accepted for publication June 12, 2012.)
Whole Blood: More than the Sum of the Parts

To the Editor:

Dr. Weiskopf’s editorial, “Reconstructing Deconstructed Blood for Trauma,”1 should prompt serious examination of conventional blood banking practices, not just as they pertain to trauma, but also to other areas of patient care that involve significant blood component transfusion. He mentions two small trials in adult cardiac surgery that have had less-than-convincing results,2,3 but he omitted one landmark study in pediatric cardiac surgery. Manno et al. at the Children’s Hospital of Philadelphia, Pennsylvania, compared use of whole blood and “reconstituted” blood (packed erythrocytes, fresh frozen plasma, and platelets) in children undergoing cardiac surgery with cardiopulmonary bypass.4 This study showed that in the highest risk group, children less than 2 yr of age having high complexity surgery, postoperative blood loss in the group receiving reconstituted blood was around twice that of the whole blood group. Very fresh whole blood did not have a significant advantage over whole blood stored for 24–48 h. In addition, they showed that the platelets in reconstituted blood had significantly more abnormal aggregation in response to adenosine diphosphate, epinephrine, and collagen, suggesting that preservation of platelet function may be one reason for the superiority of whole blood in treating the postcardiopulmonary bypass coagulopathy. Lavee et al. showed a similar effect of whole blood on preservation of platelet function by showing that platelet aggregation as assessed by electron microscopy after cardiopulmonary bypass in adult patients was restored by 1 unit of whole blood to a level equivalent to 8–10 platelet units.5 It is not only patients (of trauma and otherwise) who would benefit from more widespread use of whole blood in terms of clinical outcome and limitation of their exposure to donors. Somewhat counterintuitively, use of whole blood may also help eke out a dwindling blood supply by being substantially more efficient than components, particularly platelets, which may have lost much of their efficacy in the process of being separated and stored apart. It will require effort by clinicians to convince the blood bank community that the whole is more than the sum of the parts.

Andrew D. Pitkin, M.B.B.S., M.B.C.P., F.R.C.A.,* Mark J. Rice, M.D. *University of Florida College of Medicine, Gainesville, Florida. apitkin@anest.ufl.edu

References

2. Triulzi DJ, Gilmor GD, Ness PM, Baumgartner WA, Schultheis...