interleukin 8 (IL-8) (jury, and the use of one-lung ventilation, are involved in this tors, including cytokine imbalance, ischemia reperfusion in-

many but major complication with high mortality. Many fac-

and thoracic surgery.
flurane and sevoflurane suppress the local alveolar, but not

inflammation in patients undergoing open thoracic surgery.1
Authors remarked that proinflammatory cytokines increased in the ventilated lung after one-lung ventilation. Mediator release was more enhanced during propofol anesthesia compared with desflurane or sevoflurane administration. Postop-
eratively, the proinflammatory cytokines tumor necrosis factor-\(\alpha\) \((P < 0.001)\), interleukin-1\(\beta\) (IL-1\(\beta\)) \((P < 0.002)\), and interleukin 8 (IL-8) \((P < 0.025)\) were more increased in patients during propofol administration compared with both volatile anesthesia groups, and postoperative serum concentration of IL-6 was increased in all patient groups after tho-

Lung injury after thoracic surgery is a relatively uncom-

common but major complication with high mortality. Many fac-
tors, including cytokine imbalance, ischemia reperfusion in-
jury, and the use of one-lung ventilation, are involved in this process apart from the surgical insult itself.2 In our opinion, a point of this work is not sufficiently clear. EDTA and sulfite might be added as antimicrobial agents to several formulations of propofol, which may have different physiologic responses. Herr et al.3 showed that the patients in the surgical intensive care unit receiving propofol with EDTA had sign-
ificantly reduced mortality rates at 7 and 28 days compared with those receiving propofol without EDTA. Haitsma et al.4 compared the effects of propofol with EDTA, propofol with sulfite, and ketamine/midazolam on tumor necrosis factor-\(\alpha\), interleukin-6 (IL-6), and macrophage inflamma-

Reference

1. Schilling T, Kozian A, Senturk M, Huth C, Reinhold A, Heden-
stierna G, Hachenberg T: Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory re-

4. Haitsma JJ, Lachmann B, Papadakos PJ: Additives in intrave-

In Reply:

We appreciate the great interest of Dr. Yalcin and Dr. Ay-
dogan in reading our article,1 and we would like to thank them for their important comment regarding the different physiologic responses of propofol and its additives. Propofol has become one of the most widely administered drugs for induction and maintenance of anesthesia and for sedation in the intensive care unit. Therefore, we have chosen this substance as well to provide standardized total intravenous an-

ence in systemic anesthesia.

midazolam and the propofol with EDTA groups. They also remarked that pulmonary IL-6 can be modulated by addi-
tives in systemic anesthesia.

Accordingly, we think that reporting detailed formula of propofol in studies evaluating the effect of propofol on in-

flammatory responses would be crucial, and we hope that the previously mentioned comments might add to the value of the manuscript by Schilling et al.3

Saban Yalcin, M.D.,* Harun Aydogan, M.D. ** Harran University Medical Faculty, Şanlıurfa, Turkey. sabanyalcin@yahoo.com

References

1. Schilling T, Kozian A, Senturk M, Huth C, Reinhold A, Heden-
stierna G, Hachenberg T: Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory re-

4. Haitsma JJ, Lachmann B, Papadakos PJ: Additives in intrave-

To the Editor: We read with great interest the article by Schilling et al. dealing with effects of sevoflurane and desflurane as volatile anesthetics compared with propofol as an intravenous anes-

thetic and the relationship between pulmonary and systemic inflamma-
in patients undergoing open thoracic surgery.1
Authors remarked that proinflammatory cytokines increased in the ventilated lung after one-lung ventilation. Mediator release was more enhanced during propofol anesthesia compared with desflurane or sevoflurane administration. Postop-
eratively, the proinflammatory cytokines tumor necrosis factor-\(\alpha\) \((P < 0.001)\), interleukin-1\(\beta\) (IL-1\(\beta\)) \((P < 0.002)\), and interleukin 8 (IL-8) \((P < 0.025)\) were more increased in patients during propofol administration compared with both volatile anesthesia groups, and postoperative serum concentration of IL-6 was increased in all patient groups after tho-

Lung injury after thoracic surgery is a relatively uncom-

mon but major complication with high mortality. Many fac-
tors, including cytokine imbalance, ischemia reperfusion in-
jury, and the use of one-lung ventilation, are involved in this process apart from the surgical insult itself.2 In our opinion, a point of this work is not sufficiently clear. EDTA and sulfite might be added as antimicrobial agents to several formulations of propofol, which may have different physiologic responses. Herr et al.3 showed that the patients in the surgical intensive care unit receiving propofol with EDTA had sign-
ificantly reduced mortality rates at 7 and 28 days compared with those receiving propofol without EDTA. Haitsma et al.4 compared the effects of propofol with EDTA, propofol with sulfite, and ketamine/midazolam on tumor necrosis factor-\(\alpha\), interleukin-6 (IL-6), and macrophage inflamma-

Copyright © by the American Society of Anesthesiologists. Unauthorized reproduction of this article is prohibited.