We agree with Weiniger’s statement that increased sensitization to latex in pregnant patients could be a potential danger in the labor and delivery suite. Conversion to a latex-free hospital environment could be possible, but in our opinion additional investigations in larger groups of patients are needed to better define this potential high risk.

Gaetano Draisci, M.D.,* Bruno A. Zanfini, M.D., Stefano Catarci, M.D., Alice Mannocci, M.S., Ph.D., Eleonora Nucera, M.D. *Catholic University of Sacred Heart, Rome, Italy. gdraisci@inwind.it

References

Is a Weekend Too Long?

To the Editor:
I read with interest (and concern for those gestating) the article by Palanisamy et al. analyzing adult Sprague-Dawley rats exposed to isoflurane in utero.1 This was clearly a well done study demonstrating reduced spatial memory and reduced anxiety in those animals exposed to isoflurane in utero during a time of critical brain development. The question arises as to how this may apply clinically to humans. The gestational length described in this study was 22 days, or 528 h. The study exposed subjects to 4 h of isoflurane. Therefore, the intrauterine exposure to isoflurane accounted for 0.758% of the total gestational period. This seems minuscule, but when placed in perspective, is a significantly long period of time. In humans, a term gestation is 40 weeks, or 6,720 h, meaning a similar exposure in pregnant women would total 50 h, 55 min, and 48 s. It should not be surprising that exposing the developing fetal brain to isoflurane for more than 2 days might cause a reduction in spatial memory.

After all, the effect of isoflurane on plastic water traps is well described.2,3 Although the effect of volatile anesthetics on the developing brain is a fascinating and important topic, further study should include exposures that are clinically relevant to the human developing brain. In the meantime, it can be recommended that we avoid general anesthesia in pregnant women undergoing operations lasting longer than 50 h.

Torin D. Shear, M.D., Evanston Hospital, NorthShore University HealthSystem, University of Chicago, Pritzker School of Medicine, Evanston, Illinois. torinshear@gmail.com

References
1. Palanisamy A, Baxter MG, Keel PK, Xie Z, Crosby G, Culley DJ: Rats exposed to isoflurane in utero during early gestation are behaviorally abnormal as adults. ANESTHESIOLOGY 2011; 114:521–8
3. McAllister RK, Payne MN, Bittenbinder TM: Disruption of water trap from leak of isoflurane during the vaporizer filling process in the Dräger Apollo. ANESTHESIOLOGY 2007; 107:514

In Reply:
We appreciate the fact that Dr. Shear took an interest in our recent study showing spatial memory impairment in the adult male offspring of pregnant rats exposed to isoflurane.1 His analogy that the brain is like a water trap is silly, and the argument that 4 h of anesthesia during rat gestation is equivalent to a weekend of anesthesia in humans, and therefore not clinically relevant, is mathematically correct but scientifically simplistic. The rat brain and human brain are obviously different. In comparison with that of the rat, for example, the human brain has approximately 430-fold more neurons, a more intricate dendritic arbor, and a markedly larger and more complicated cortical surface (accounting for 77% of brain volume vs. just 30% in the rat).2,3 Of particular relevance for gestational exposure to anesthetics, the human brain has more neural stem cells, which have threefold more mitotic cycles and must traverse far longer distances to reach the right place at the right time than those in the rat. In addition, there is the fact that the human brain does far more complicated things (such as math), which requires more precise and complex connections and circuits. In short, the human brain is exponentially more intricate than the rodent brain. This is why we were careful not to extrapolate our results in the rodent to humans. More to the point, however, to the extent vulnerability is proportional to complexity (see recent events on Wall Street), it is quite plausible that the developing human brain is actually more easily damaged by general anesthetics than the rodent brain or, alternatively, that the consequences of injury are more noticeable because the demands on the system are greater in humans. Humans,